skip to main content


Search for: All records

Creators/Authors contains: "Dresen, Georg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Earthquakes are rupture-like processes that propagate along tectonic faults and cause seismic waves. The propagation speed and final area of the rupture, which determine an earthquake’s potential impact, are directly related to the nature and quantity of the energy dissipation involved in the rupture process. Here, we present the challenges associated with defining and measuring the energy dissipation in laboratory and natural earthquakes across many scales. We discuss the importance and implications of distinguishing between energy dissipation that occurs close to and far behind the rupture tip, and we identify open scientific questions related to a consistent modeling framework for earthquake physics that extends beyond classical Linear Elastic Fracture Mechanics.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract

    Dynamic failure in the laboratory is commonly preceded by many foreshocks which accompany premonitory aseismic slip. Aseismic slip is also thought to govern earthquake nucleation in nature, yet, foreshocks are rare. Here, we examine how heterogeneity due to different roughness, damage and pore pressures affects premonitory slip and acoustic emission characteristics. High fluid pressures increase stiffness and reduce heterogeneity which promotes more rapid slip acceleration and shorter precursory periods, similar to the effect of low geometric heterogeneity on smooth faults. The associated acoustic emission activity in low-heterogeneity samples becomes increasingly dominated by earthquake-like double-couple focal mechanisms. The similarity of fluid pressure increase and roughness reduction suggests that increased stress and geometric homogeneity may substantially shorten the duration of foreshock activity. Gradual fault activation and extended foreshock activity is more likely observable on immature faults at shallow depth.

     
    more » « less
  3. SUMMARY

    A better understanding of damage accumulation before dynamic failure events in geological material is essential to improve seismic hazard assessment. Previous research has demonstrated the sensitivity of seismic velocities to variations in crack geometry, with established evidence indicating that initial crack closure induces rapid changes in velocity. Our study extends these findings by investigating velocity changes by applying coda wave interferometry (CWI). We use an array of 16 piezoceramic transducers to send and record ultrasonic pulses and to determine changes in seismic velocity on intact and faulted Westerly granite samples. Velocity changes are determined from CWI and direct phase arrivals. This study consists of three sets of experiments designed to characterize variations in seismic velocity under various initial and boundary conditions. The first set of experiments tracks velocity changes during hydrostatic compression from 2 and 191 MPa in intact Westerly granite samples. The second set of experiments focuses on saw-cut samples with different roughness and examines the effects of confining pressure increase from 2 to 120 MPa. The dynamic formation of a fracture and the preceding damage accumulation is the focus of the third type of experiment, during which we fractured an initially intact rock sample by increasing the differential stress up to 780 MPa while keeping the sample confined at 75 MPa. The tests show that: (i) The velocity change for rough saw cut samples suggests that the changes in bulk material properties have a more pronounced influence than fault surface apertures or roughness. (ii) Seismic velocities demonstrate higher sensitivity to damage accumulation under increasing differential stress than macroscopic measurements. Axial stress measured by an external load cell deviates from linearity around two-third through the experiment at a stress level of 290 MPa higher than during the initial drop in seismic velocities. (iii) Direct waves exhibit strong anisotropy with increasing differential stress and accumulating damage before rock fracture. Coda waves, on the other hand, effectively average over elastic wave propagation for both fast and slow directions, and the resulting velocity estimates show little evidence for anisotropy. The results demonstrate the sensitivity of seismic velocity to damage evolution at various boundary conditions and progressive microcrack generation with long lead times before dynamic fracture.

     
    more » « less
  4. Free, publicly-accessible full text available November 1, 2024
  5. Abstract We review properties and processes of earthquake rupture zones based on field studies, laboratory observations, theoretical models and simulations, with the goal of assessing the possible dominance of different processes in different parts of the rupture and validity of commonly used models. Rupture zones may be divided into front , intermediate , and tail regions that interact to different extents. The rupture front is dominated by fracturing and granulation processes and strong dilatation, producing faulting products that are reworked by subsequent sliding behind. The intermediate region sustains primarily frictional sliding with relatively high slip rates that produce appreciable stress transfer to the propagating front. The tail region further behind is characterized by low slip rates that effectively do not influence the propagating front, although it (and the intermediate region) can spawn small offspring rupture fronts. Wave-mediated stress transfer can also trigger failures ahead of the rupture front. Earthquake ruptures are often spatially discontinuous and intermittent with a hierarchy of asperity and segment sizes that radiate waves with different tensorial compositions and frequency bands. While different deformation processes dominating parts of the rupture zones can be treated effectively with existing constitutive relations, a more appropriate analysis of earthquake processes would require a model that combines aspects of fracture, damage-breakage, and frictional frameworks. 
    more » « less
  6. Abstract

    Earthquakes rarely occur in isolation but rather as complex sequences of fore, main and aftershocks. Assessing the associated seismic hazard requires a holistic view of event interactions. We conduct frictional sliding experiments on faulted Westerly Granite samples at mid‐crustal stresses to investigate fault damage and roughness effects on aftershock generation. Abrupt laboratory fault slip is followed by periods of extended stress relaxation and aftershocks. Large roughness promotes less co‐seismic slip and high aftershock activity whereas smooth faults promote high co‐seismic slip with few aftershocks. Conditions close to slip instability generate lab‐quake sequences that exhibit similar statistical distributions to natural earthquakes. Aftershock productivity in the lab is linearly related to the residual strain energy on the fault which, in turn, is controlled by the level of surface heterogeneity. We conclude that roughness and damage govern slip stability and seismic energy partitioning between fore, main and aftershocks in lab and nature.

     
    more » « less