Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chiral effective field theory ( ) has proved to be a powerful microscopic framework for predicting the properties of neutron-rich nuclear matter with quantified theoretical uncertainties up to about twice the nuclear saturation density. Tests of predictions are typically performed at low densities using nuclear experiments, with neutron star (NS) constraints only being considered at high densities. In this work, we discuss how asteroseismic quasinormal modes within NSs could be used to constrain specific matter properties at particular densities not just the integrated quantities to which bulk NS observables are sensitive. We focus on the crust-core interface mode, showing that measuring this mode's frequency would provide a meaningful test of at densities around half the saturation density. Conversely, we use nuclear matter properties predicted by to estimate that this mode's frequency is around . Asteroseismic observables such as resonant phase shifts in gravitational-wave signals and multimessenger resonant shattering flare timings, therefore, have the potential to provide useful tests of . Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
-
This white paper is the result of a collaboration by many of those that attended a workshop at the facility for rare isotope beams (FRIB), organized by the FRIB Theory Alliance (FRIB-TA), on ‘Theoretical Justifications and Motivations for Early High-Profile FRIB Experiments’. It covers a wide range of topics related to the science that will be explored at FRIB. After a brief introduction, the sections address: section 2: Overview of theoretical methods, section 3: Experimental capabilities, section 4: Structure, section 5: Near-threshold Physics, section 6: Reaction mechanisms, section 7: Nuclear equations of state, section 8: Nuclear astrophysics, section 9: Fundamental symmetries, and section 10: Experimental design and uncertainty quantification.more » « lessFree, publicly-accessible full text available May 6, 2026
-
Abstract This review aims at providing an extensive discussion of modern constraints relevant for dense and hot strongly interacting matter. It includes theoretical first-principle results from lattice and perturbative QCD, as well as chiral effective field theory results. From the experimental side, it includes heavy-ion collision and low-energy nuclear physics results, as well as observations from neutron stars and their mergers. The validity of different constraints, concerning specific conditions and ranges of applicability, is also provided.more » « less
An official website of the United States government
