skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Driscoll, Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evaluating whether hydrological models are right for the right reasons demands reproducible model benchmarking and diagnostics that evaluate not just statistical predictive model performance but also internal processes. Such model benchmarking and diagnostic efforts will benefit from standardized methods and ready-to-use toolkits. Using the Jupyter platform, this work presents HydroBench, a model-agnostic benchmarking tool consisting of three sets of metrics: 1) common statistical predictive measures, 2) hydrological signature-based process metrics, including a new time-linked flow duration curve and 3) information-theoretic diagnostics that measure the flow of information among model variables. As a test case, HydroBench was applied to compare two model products (calibrated and uncalibrated) of the National Hydrologic Model - Precipitation Runoff Modeling System (NHM-PRMS) at the Cedar River watershed, WA, United States. Although the uncalibrated model has the highest predictive performance, particularly for high flows, the signature-based diagnostics showed that the model overestimates low flows and poorly represents the recession processes. Elucidating why low flows may have been overestimated, the information-theoretic diagnostics indicated a higher flow of information from precipitation to snowmelt to streamflow in the uncalibrated model compared to the calibrated model, where information flowed more directly from precipitation to streamflow. This test case demonstrated the capability of HydroBench in process diagnostics and model predictive and functional performance evaluations, along with their tradeoffs. Having such a model benchmarking tool not only provides modelers with a comprehensive model evaluation system but also provides an open-source tool that can further be developed by the hydrological community. 
    more » « less
  2. null (Ed.)
    Design is a concept that means different things to different people. Even in the engineering design research community, there is little agreement on a consistent definition of design. This study looks into how engineering students understand product design, using a concept mapping exercise to elicit the key concepts and relationships present in their mental models. An analysis of concept maps from 130 third-year undergraduate engineering students shows how these students think about design, the common themes and relationships that are seen across the population, and variations across different groups of students. By understanding how students in the midst of ABET-accredited programs conceptualize design, conclusions can be drawn regarding the effectiveness of existing curricula in instilling a complete understanding of holistic product design. This can lead to recommendations regarding future engineering design learning objectives, teaching materials, and activities. 
    more » « less
  3. Research has shown that engineering students are graduating without all of the skills that they need to succeed in professional engineering practice. While undergraduate engineering programs emphasize technical design and analysis, they generally do not adequately teach or discuss marketability, and evidence suggests that engineering students are graduating without a sufficient grasp of the bigger picture of design. This is reinforced by the available tools for use in engineering education, which are highly focused on ensuring technical feasibility, and a corresponding lack of tools for engineers to explore other design needs. At the same time, research in engineering design has resulted in new market-driven design techniques, which provide guidance for design practitioners regarding how to develop products that are both technically sound and marketable. However, this concept of market-driven design has not yet been widely integrated into engineering curricula. By exploring how current students conceptualize design, this study seeks to contribute to a more balanced perspective on design in undergraduate engineers that accounts for both technical feasibility and market needs. In this paper, we examine third-year Engineering Management students’ mental models of design prior to and after a project-based design course that emphasizes market-driven design concepts and tools. The fundamental research questions are: (1) To what extent do undergraduate engineering students' initial conceptions of design account for the market context, such as competition and consumer considerations? (2) In what ways do these design conceptions change after introducing market-driven design techniques and tools in a design course? Using concept mapping exercises (pre- and post-course), open-ended reflection assignments, surveys, and an assessment of project performance, we reveal how students conceive of and learn about the market context as an integral part of the design process. This contributes to insights regarding how students conceptually balance the technical and non-technical elements of design, as well as evidence regarding the value of a constructivism-based educational approach to advancing student understanding of market-driven design. The results provide a foundational understanding and recommendations regarding holistic design education for engineers in order to reduce the school to work transition gap. 
    more » « less
  4. Abstract How precipitation (P) is translated into streamflow (Q) and over what timescales (i.e., “memory”) is difficult to predict without calibration of site‐specific models or using geochemical approaches, posing barriers to prediction in ungauged basins or advancement of general theories. Here, we used a data‐driven approach to identify regional patterns and exogenous controls on P–Q interactions. We applied an information flow analysis, which quantifies uncertainty reduction, to a daily time series of P and Q from 671 watersheds across the conterminous United States. We first demonstrated that information transfer from P to Q primarily reflects the quickflow component of water‐budgets, based on a watershed model. Readily quantifiable information flows show a functional relationship with model parameters, suggesting utility for model calibration. Second, applied to real watersheds, P–Q information flows exhibit seasonally varying behavior within regions in a manner consistent with dominant runoff generation mechanisms. However, the timing and the magnitude of information flows also reflect considerable subregional heterogeneity, likely attributable to differences in watershed size, baseflow contributions, and variation in aerial coverage of preferential flow paths. A regression analysis showed that a combination of climate and watershed characteristics are predictive of P–Q information flows. Though information flows cannot, in most cases, uniquely determine dominant runoff mechanisms, they provide a means to quantify the heterogeneous outcomes of those mechanisms within regions, thereby serving as a benchmarking tool for models developed at the regional scale. Last, information flows characterize regionally specific ways in which catchment connectivity changes from the wet to dry season. 
    more » « less
  5. Abstract BackgroundEngineering education traditionally emphasizes technical skills, sometimes at the cost of under‐preparing graduates for the real‐world engineering context. In recent decades, attempts to address this issue include increasing project‐based assignments and engineering design courses in curricula; however, a skills gap between education and industry remains. Purpose/HypothesisThis study aims to understand how undergraduate engineering students perceive product design before and after an upper‐level project‐based design course, as measured through concept maps. The purpose is to measure whether and how students account for the technical and nontechnical elements of design, as well as how a third‐year design course influences these design perceptions. Design/MethodConcept maps about product design were collected from 105 third‐year engineering students at the beginning and end of a design course. Each concept map's content and structure were quantitatively analyzed to evaluate the students' conceptual understandings and compare them across disciplines in the before and after conditions. ResultsThe analyses report on how student conceptions differ by discipline at the outset and how they changed after taking the course. Mechanical Engineering students showed a decrease in business‐related content and an increased focus on societal content, while students in the Engineering Management and Industrial and Systems Engineering programs showed an increase in business topics, specifically market‐related content. ConclusionThis study reveals how undergraduate students conceptualize product design, and specifically to what extent they consider engineering, business, and societal factors. The design courses were shown to significantly shape student conceptualizations of product design, and they did so in a way that mirrored the topics in the course syllabi. The findings offer insights into the education‐practice skills gap and may help future educators to better prepare engineering students to meet industry needs. 
    more » « less