skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Drivas, Theodore D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Complex topographies exhibit universal properties when fluvial erosion dominates landscape evolution over other geomorphological processes. Similarly, we show that the solutions of a minimalist landscape evolution model display invariant behavior as the impact of soil diffusion diminishes compared to fluvial erosion at the landscape scale, yielding complete self-similarity with respect to a dimensionless channelization index. Approaching its zero limit, soil diffusion becomes confined to a region of vanishing area and large concavity or convexity, corresponding to the locus of the ridge and valley network. We demonstrate these results using one dimensional analytical solutions and two dimensional numerical simulations, supported by real-world topographic observations. Our findings on the landscape self-similarity and the localized diffusion resemble the self-similarity of turbulent flows and the role of viscous dissipation. Topographic singularities in the vanishing diffusion limit are suggestive of shock waves and singularities observed in nonlinear complex systems.

    more » « less
    Free, publicly-accessible full text available December 19, 2024
  3. Abstract

    We study a class of ordinary differential equations with a non-Lipschitz point singularity that admits non-unique solutions through this point. As a selection criterion, we introduce stochastic regularizations depending on a parameter$\nu $: the regularized dynamics is globally defined for each$\nu> 0$, and the original singular system is recovered in the limit of vanishing$\nu $. We prove that this limit yields aunique statistical solutionindependent of regularization when the deterministic system possesses a chaotic attractor having a physical measure with the convergence to equilibrium property. In this case, solutions become spontaneously stochastic after passing through the singularity: they are selected randomly with an intrinsic probability distribution.

    more » « less
    Free, publicly-accessible full text available October 11, 2024
  4. Abstract

    We show that certain singular structures (Hölderian cusps and mild divergences) are transported by the flow of homeomorphisms generated by an Osgood velocity field. The structure of these singularities is related to the modulus of continuity of the velocity and the results are shown to be sharp in the sense that slightly more singular structures cannot generally be propagated. For the 2D Euler equation, we prove that certain singular structures are preserved by the motion, e.g. a system of$$\log \log _+(1/|x|)$$loglog+(1/|x|)vortices (and those that are slightly less singular) travel with the fluid in a nonlinear fashion, up to bounded perturbations. We also give stability results for weak Euler solutions away from their singular set.

    more » « less
  5. A defining feature of three-dimensional hydrodynamic turbulence is that the rate of energy dissipation is bounded away from zero as viscosity is decreased (Reynolds number increased). This phenomenon—anomalous dissipation—is sometimes called the ‘zeroth law of turbulence’ as it underpins many celebrated theoretical predictions. Another robust feature observed in turbulence is that velocity structure functions S p ( ℓ ) := ⟨ | δ ℓ u | p ⟩ exhibit persistent power-law scaling in the inertial range, namely S p ( ℓ ) ∼ | ℓ | ζ p for exponents ζ p > 0 over an ever increasing (with Reynolds) range of scales. This behaviour indicates that the velocity field retains some fractional differentiability uniformly in the Reynolds number. The Kolmogorov 1941 theory of turbulence predicts that ζ p = p / 3 for all p and Onsager’s 1949 theory establishes the requirement that ζ p ≤ p / 3 for p ≥   3 for consistency with the zeroth law. Empirically, ζ 2 ⪆ 2 / 3 and ζ 3 ⪅ 1 , suggesting that turbulent Navier–Stokes solutions approximate dissipative weak solutions of the Euler equations possessing (nearly) the minimal degree of singularity required to sustain anomalous dissipation. In this note, we adopt an experimentally supported hypothesis on the anti-alignment of velocity increments with their separation vectors and demonstrate that the inertial dissipation provides a regularization mechanism via the Kolmogorov 4/5-law. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 2)’. 
    more » « less
  6. We study two-dimensional Rayleigh–Bénard convection with Navier-slip, fixed temperature boundary conditions and establish bounds on the Nusselt number. As the slip-length varies with Rayleigh number R a , this estimate interpolates between the Whitehead–Doering bound by R a 5 12 for free-slip conditions (Whitehead & Doering. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 , 244501) and the classical Doering–Constantin R a 1 2 bound (Doering & Constantin. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53 , 5957–5981). This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’. 
    more » « less
  7. Abstract We study stationary free boundary configurations of an ideal incompressible magnetohydrodynamic fluid possessing nested flux surfaces. In 2D simply connected domains, we prove that if the magnetic field and velocity field are never commensurate, the only possible domain for any such equilibria is a disk, and the velocity and magnetic field are circular. We give examples of non-symmetric equilibria occupying a domain of any shape by imposing an external magnetic field generated by a singular current sheet charge distribution (external coils). Some results carry over to 3D axisymmetric solutions. These results highlight the importance of external magnetic fields for the existence of asymmetric equilibria. 
    more » « less