Abstract Given a suitable solutionV(t, x) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$ . Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$ satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$ . In that setting, it is known that$$H^{-1}(\mathbb {R})$$ is sharp in the class of$$H^s(\mathbb {R})$$ spaces. 
                        more » 
                        « less   
                    This content will become publicly available on November 1, 2025
                            
                            On the Support of Anomalous Dissipation Measures
                        
                    
    
            Abstract By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon & Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018.https://doi.org/10.1007/s00220-017-3078-4; Majda in Am Math Soc 43(281):93, 1983.https://doi.org/10.1090/memo/0281) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023.https://doi.org/10.1007/s00220-022-04626-0 624; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023.https://doi.org/10.1007/s40818-023-00162-9; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022.https://doi.org/10.1007/s00205-021-01736-2). For$$L^q_tL^r_x$$ suitable Leray–Hopf solutions of the$$d-$$ dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure$$\mathcal {P}^{s}$$ , which gives$$s=d-2$$ as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2235395
- PAR ID:
- 10576881
- Publisher / Repository:
- JMathFluids
- Date Published:
- Journal Name:
- Journal of Mathematical Fluid Mechanics
- Volume:
- 26
- Issue:
- 4
- ISSN:
- 1422-6928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We prove uniform$$\ell ^2$$ -valued maximal inequalities for polynomial ergodic averages and truncated singular operators of Cotlar type modeled over multidimensional subsets of primes. In the averages case, we combine this with earlier one-parameter oscillation estimates (Mehlhop and Słomian in Math Ann, 2023,https://doi.org/10.1007/s00208-023-02597-8) to prove corresponding multiparameter oscillation estimates. This provides a fuller quantitative description of the pointwise convergence of the mentioned averages and is a generalization of the polynomial Dunford–Zygmund ergodic theorem attributed to Bourgain (Mirek et al. in Rev Mat Iberoam 38:2249–2284, 2022).more » « less
- 
            Abstract This article revisits the problem of global well-posedness for the generalized parabolic Anderson model on$$\mathbb {R}^+\times \mathbb {T}^2$$ within the framework of paracontrolled calculus (Gubinelli et al. in Forum Math, 2015). The model is given by the equation:$$\begin{aligned} (\partial _t-\Delta ) u=F(u)\eta \end{aligned}$$ where$$\eta \in C^{-1-\kappa }$$ with$$1/6>\kappa >0$$ , and$$F\in C_b^2(\mathbb {R})$$ . Assume that$$\eta \in C^{-1-\kappa }$$ and can be lifted to enhanced noise, we derive new a priori bounds. The key idea follows from the recent work by Chandra et al. (A priori bounds for 2-d generalised Parabolic Anderson Model,,2024), to represent the leading error term as a transport type term, and our techniques encompass the paracontrolled calculus, the maximum principle, and the localization approach (i.e. high-low frequency argument).more » « less
- 
            Abstract In this note, we address the validity of certain exact results from turbulence theory in the deterministic setting. The main tools, inspired by the work of Duchon and Robert (2000Nonlinearity13249–55) and Eyink (2003Nonlinearity16137), are a number of energy balance identities for weak solutions of the incompressible Euler and Navier–Stokes equations. As a consequence, we show that certain weak solutions of the Euler and Navier–Stokes equations satisfy deterministic versions of Kolmogorov’s , , laws. We apply these computations to improve a recent result of Hofmanovaet al(2023 arXiv:2304.14470), which shows that a construction of solutions of forced Navier–Stokes due to Bruèet al(2023Commun. Pure Appl. Anal.) and exhibiting a form of anomalous dissipation satisfies asymptotic versions of Kolmogorov’s laws. In addition, we show that the globally dissipative 3D Euler flows recently constructed by Giriet al(2023 arXiv:2305.18509) satisfy the local versions of Kolmogorov’s laws.more » « less
- 
            Abstract The Markoff graphs modulopwere proven by Chen (Ann Math 199(1), 2024) to be connected for all but finitely many primes, and Baragar (The Markoff equation and equations of Hurwitz. Brown University, 1991) conjectured that they are connected for all primes, equivalently that every solution to the Markoff equation moduloplifts to a solution over$$\mathbb {Z}$$ . In this paper, we provide an algorithmic realization of the process introduced by Bourgain et al. [arXiv:1607.01530] to test whether the Markoff graph modulopis connected for arbitrary primes. Our algorithm runs in$$o(p^{1 + \epsilon })$$ time for every$$\epsilon > 0$$ . We demonstrate this algorithm by confirming that the Markoff graph modulopis connected for all primes less than one million.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
