skip to main content

Search for: All records

Creators/Authors contains: "Drlica-Wagner, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2023
  2. Abstract We perform a detailed photometric and astrometric analysis of stars in the Jet stream using data from the first data release of the DECam Local Volume Exploration Survey DR1 and Gaia EDR3. We discover that the stream extends over ∼ 29° on the sky (increasing the known length by 18°), which is comparable to the kinematically cold Phoenix, ATLAS, and GD-1 streams. Using blue horizontal branch stars, we resolve a distance gradient along the Jet stream of 0.2 kpc deg −1 , with distances ranging from D ⊙ ∼ 27–34 kpc. We use natural splines to simultaneously fit themore »stream track, width, and intensity to quantitatively characterize density variations in the Jet stream, including a large gap, and identify substructure off the main track of the stream. Furthermore, we report the first measurement of the proper motion of the Jet stream and find that it is well aligned with the stream track, suggesting the stream has likely not been significantly perturbed perpendicular to the line of sight. Finally, we fit the stream with a dynamical model and find that it is on a retrograde orbit, and is well fit by a gravitational potential including the Milky Way and Large Magellanic Cloud. These results indicate the Jet stream is an excellent candidate for future studies with deeper photometry, astrometry, and spectroscopy to study the potential of the Milky Way and probe perturbations from baryonic and dark matter substructure.« less
    Free, publicly-accessible full text available December 16, 2022
  3. Abstract We report the detection of three RR Lyrae (RRL) stars (two RRc and one RRab) in the ultra-faint dwarf (UFD) galaxy Centaurus I (Cen I) and two Milky Way (MW) δ Scuti/SX Phoenicis stars based on multi-epoch giz DECam observations. The two RRc stars are located within two times the half-light radius ( r h ) of Cen I, while the RRab star (CenI-V3) is at ∼6 r h . The presence of three distant RRL stars clustered this tightly in space represents a 4.7 σ excess relative to the smooth distribution of RRL in the Galactic halo. Usingmore »the newly detected RRL stars, we obtain a distance modulus to Cen I of μ 0 = 20.354 ± 0.002 mag ( σ = 0.03 mag), a heliocentric distance of D ⊙ = 117.7 ± 0.1 kpc ( σ = 1.6 kpc), with systematic errors of 0.07 mag and 4 kpc. The location of the Cen I RRL stars in the Bailey diagram is in agreement with other UFD galaxies (mainly Oosterhoff II). Finally, we study the relative rate of RRc+RRd (RRcd) stars ( f cd ) in UFD and classical dwarf galaxies. The full sample of MW dwarf galaxies gives a mean of f cd = 0.28. While several UFD galaxies, such as Cen I, present higher RRcd ratios, if we combine the RRL populations of all UFD galaxies, the RRcd ratio is similar to the one obtained for the classical dwarfs ( f cd ∼ 0.3). Therefore, there is no evidence for a different fraction of RRcd stars in UFD and classical dwarf galaxies.« less
    Free, publicly-accessible full text available November 22, 2022
  4. ABSTRACT The CMB lensing signal from cosmic voids and superclusters probes the growth of structure in the low-redshift cosmic web. In this analysis, we cross-correlated the Planck CMB lensing map with voids detected in the Dark Energy Survey Year 3 (Y3) data set (∼5000 deg2), expanding on previous measurements that used Y1 catalogues (∼1300 deg2). Given the increased statistical power compared to Y1 data, we report a 6.6σ detection of negative CMB convergence (κ) imprints using approximately 3600 voids detected from a redMaGiC luminous red galaxy sample. However, the measured signal is lower than expected from the MICE N-body simulation that ismore »based on the ΛCDM model (parameters Ωm = 0.25, σ8 = 0.8), and the discrepancy is associated mostly with the void centre region. Considering the full void lensing profile, we fit an amplitude $A_{\kappa }=\kappa _{{\rm DES}}/\kappa _{{\rm MICE}}$ to a simulation-based template with fixed shape and found a moderate 2σ deviation in the signal with Aκ ≈ 0.79 ± 0.12. We also examined the WebSky simulation that is based on a Planck 2018 ΛCDM cosmology, but the results were even less consistent given the slightly higher matter density fluctuations than in MICE. We then identified superclusters in the DES and the MICE catalogues, and detected their imprints at the 8.4σ level; again with a lower-than-expected Aκ = 0.84 ± 0.10 amplitude. The combination of voids and superclusters yields a 10.3σ detection with an Aκ = 0.82 ± 0.08 constraint on the CMB lensing amplitude, thus the overall signal is 2.3σ weaker than expected from MICE.« less
    Free, publicly-accessible full text available August 10, 2023
  5. Abstract We use a recent census of the Milky Way (MW) satellite galaxy population to constrain the lifetime of particle dark matter (DM). We consider two-body decaying dark matter (DDM) in which a heavy DM particle decays with lifetime τ comparable to the age of the universe to a lighter DM particle (with mass splitting ϵ ) and to a dark radiation species. These decays impart a characteristic “kick velocity,” V kick = ϵ c , on the DM daughter particles, significantly depleting the DM content of low-mass subhalos and making them more susceptible to tidal disruption. We fit themore »suppression of the present-day DDM subhalo mass function (SHMF) as a function of τ and V kick using a suite of high-resolution zoom-in simulations of MW-mass halos, and we validate this model on new DDM simulations of systems specifically chosen to resemble the MW. We implement our DDM SHMF predictions in a forward model that incorporates inhomogeneities in the spatial distribution and detectability of MW satellites and uncertainties in the mapping between galaxies and DM halos, the properties of the MW system, and the disruption of subhalos by the MW disk using an empirical model for the galaxy–halo connection. By comparing to the observed MW satellite population, we conservatively exclude DDM models with τ < 18 Gyr (29 Gyr) for V kick = 20 kms −1 (40 kms −1 ) at 95% confidence. These constraints are among the most stringent and robust small-scale structure limits on the DM particle lifetime and strongly disfavor DDM models that have been proposed to alleviate the Hubble and S 8 tensions.« less
    Free, publicly-accessible full text available June 1, 2023
  6. null (Ed.)
    Free, publicly-accessible full text available October 1, 2022
  7. Free, publicly-accessible full text available May 1, 2023
  8. Abstract We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg 2 of the high-Galactic-latitude (∣ b ∣ > 10°) sky in four broadband optical/near-infrared filters ( g , r , i , z ). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5 σ point-source depth of g = 24.3, rmore »= 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg 2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform.« less
    Free, publicly-accessible full text available August 1, 2023
  9. ABSTRACT We present cosmological constraints from the analysis of angular power spectra of cosmic shear maps based on data from the first three years of observations by the Dark Energy Survey (DES Y3). Our measurements are based on the pseudo-Cℓ method and complement the analysis of the two-point correlation functions in real space, as the two estimators are known to compress and select Gaussian information in different ways, due to scale cuts. They may also be differently affected by systematic effects and theoretical uncertainties, making this analysis an important cross-check. Using the same fiducial Lambda cold dark matter model as inmore »the DES Y3 real-space analysis, we find ${S_8 \equiv \sigma _8 \sqrt{\Omega _{\rm m}/0.3} = 0.793^{+0.038}_{-0.025}}$, which further improves to S8 = 0.784 ± 0.026 when including shear ratios. This result is within expected statistical fluctuations from the real-space constraint, and in agreement with DES Y3 analyses of non-Gaussian statistics, but favours a slightly higher value of S8, which reduces the tension with the Planck 2018 constraints from 2.3σ in the real space analysis to 1.5σ here. We explore less conservative intrinsic alignments models than the one adopted in our fiducial analysis, finding no clear preference for a more complex model. We also include small scales, using an increased Fourier mode cut-off up to $k_{\rm max}={5}\, {h}\, {\rm Mpc}^{-1}$, which allows to constrain baryonic feedback while leaving cosmological constraints essentially unchanged. Finally, we present an approximate reconstruction of the linear matter power spectrum at present time, found to be about 20 per cent lower than predicted by Planck 2018, as reflected by the lower S8 value.« less
    Free, publicly-accessible full text available July 27, 2023