skip to main content

Search for: All records

Creators/Authors contains: "Drory, Niv"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Post-starburst galaxies (PSBs) are transition galaxies showing evidence of recent rapid star formation quenching. To understand the role of galaxy mergers in triggering quenching, we investigate the incidence of PSBs and resolved PSB properties in post-merger galaxies using both SDSS single-fibre spectra and MaNGA resolved IFU spectra. We find post-mergers have a PSB excess of 10–20 times that relative to their control galaxies using single-fibre PSB diagnostics. A similar excess of ∼ 19 times is also found in the fraction of central (C)PSBs and ring-like (R)PSBs in post-mergers using the resolved PSB diagnostic. However, 60 per cent of the CPSBs + RPSBs in both post-mergers and control galaxies are missed by the single-fibre data. By visually inspecting the resolved PSB distribution, we find that the fraction of outside-in quenching is seven times higher than inside-out quenching in PSBs in post-mergers while PSBs in control galaxies do not show large differences in these quenching directions. In addition, we find a marginal deficit of H i gas in PSBs relative to non-PSBs in post-mergers using the MaNGA-H i data. The excesses of PSBs in post-mergers suggest that mergers play an important role in triggering quenching. Resolved IFU spectra are important to recover the PSBs missed by single-fibre spectra. The excessmore »of outside-in quenching relative to inside-out quenching in post-mergers suggests that AGNs are not the dominant quenching mechanism in these galaxies, but that processes from the disc (gas inflows/consumption and stellar feedback) play a more important role.

    « less
  2. ABSTRACT We study the bar pattern speeds and corotation radii of 225 barred galaxies, using integral field unit data from MaNGA and the Tremaine–Weinberg method. Our sample, which is divided between strongly and weakly barred galaxies identified via Galaxy Zoo, is the largest that this method has been applied to. We find lower pattern speeds for strongly barred galaxies than for weakly barred galaxies. As simulations show that the pattern speed decreases as the bar exchanges angular momentum with its host, these results suggest that strong bars are more evolved than weak bars. Interestingly, the corotation radius is not different between weakly and strongly barred galaxies, despite being proportional to bar length. We also find that the corotation radius is significantly different between quenching and star-forming galaxies. Additionally, we find that strongly barred galaxies have significantly lower values for $\mathcal {R}$, the ratio between the corotation radius and the bar radius, than weakly barred galaxies, despite a big overlap in both distributions. This ratio classifies bars into ultrafast bars ($\mathcal {R} \lt $ 1.0; 11 per cent of our sample), fast bars (1.0 $\lt \mathcal {R} \lt $ 1.4; 27 per cent), and slow bars ($\mathcal {R} \gt $ 1.4; 62 per cent). Simulations show thatmore »$\mathcal {R}$ is correlated with the bar formation mechanism, so our results suggest that strong bars are more likely to be formed by different mechanisms than weak bars. Finally, we find a lower fraction of ultrafast bars than most other studies, which decreases the recently claimed tension with Lambda cold dark matter. However, the median value of $\mathcal {R}$ is still lower than what is predicted by simulations.« less
    Free, publicly-accessible full text available March 14, 2024
  3. Abstract

    We investigate the role of galaxy mergers in triggering active galactic nuclei (AGN) in the nearby universe. Our analysis is based on a sample of 79 post-merger remnant galaxies with deep X-ray observations from Chandra/XMM-Newton capable of detecting a low-luminosity AGN of ≥1040.5erg s−1. This sample is derived from a visually classified, volume-limited sample of 807 post-mergers identified in the Sloan Digital Sky Survey Data Release 14 with logM*/M≥ 10.5 and 0.02 ≤z≤ 0.06. We find that the X-ray AGN fraction in this sample is 55.7% ± 5.6% compared to 23.6% ± 2.8% for a mass- and redshift-matched noninteracting control sample. The multiwavelength AGN fraction (identified as an AGN in one of X-ray, IR, radio or optical diagnostics) for post-mergers is 76.6% ± 4.8% compared to 39.1% ± 3.2% for controls. Thus post-mergers exhibit a high overall AGN fraction with an excess between 2 and 4 depending on the AGN diagnostics used. In addition, we find most optical, IR, and radio AGN are also identified as X-ray AGN while a large fraction of X-ray AGN are not identified in any other diagnostic. This highlights the importance of deep X-ray imaging to identify AGN. We find that the X-ray AGNmore »fraction of post-mergers is independent of the stellar mass above logM*/M≥ 10.5 unlike the trend seen in control galaxies. Overall, our results show that post-merger galaxies are a good tracer of the merger–AGN connection and strongly support the theoretical expectations that mergers trigger AGN.

    « less
  4. Abstract The recent discovery of the extremely lensed Earendel object at z = 6.2 is remarkable in that it is likely a single star or stellar multiple, observed within the first billion years of cosmic history. Depending on its mass, which is still uncertain but will soon be more tightly constrained with the James Webb Space Telescope, the Earendel star might even be a member of the first generation of stars, the so-called Population III (Pop III). By combining results from detailed cosmological simulations of the assembly of the first galaxies, including the enrichment of the pristine gas with heavy chemical elements, with assumptions on key stellar parameters, we quantify the probability that Earendel indeed has a Pop III origin. We find that this probability is nonnegligible throughout the mass range inferred for Earendel, specifically ranging from a few percent at the lower-mass end to near unity for some Pop III initial mass function (IMF) models toward the high-mass end of the allowed range. For models that extend the metal-enriched IMF to 500 M ⊙ , the likelihood of Earendel being a Pop III star stays at the few to 10% level. We discuss the implications of such a discoverymore »for the overall endeavor to probe the hitherto so elusive first stars in the universe.« less
  5. Abstract

    We present a comparative study of active galactic nuclei (AGN) between galaxy pairs and isolated galaxies with the final data release of the MaNGA integral field spectroscopic survey. We build a sample of 391 kinematic galaxy pairs within the footprint of the survey and select AGN using the survey's spectra. We use the comoving volume densities of the AGN samples to quantify the effects that tidal interactions have on the triggering of nuclear accretion. Our hypothesis is that the pair sample contains AGN that are triggered by not only stochastic accretion but also tidally induced accretion and correlated accretion. With the level of stochastically triggered AGN fixed by the control sample, we model the strength of tidally induced accretion and correlated accretion as a function of projected separation (rp) and compare the model expectations with the observed volume densities of dual AGN and offset AGN (single AGN in a pair). Atrp∼ 10 kpc, we find that tidal interactions induce ∼30% more AGN than stochastic fueling and cause ∼12% of the offset AGN to become dual AGN because of correlations. The strength of both these effects decreases with increasingrp. We also find that the [Oiii] luminosities of the AGN inmore »galaxy pairs are consistent with those found in isolated galaxies, likely because stochastically fed AGN dominate even among close pairs. Our results illustrate that while we can detect tidally induced effects statistically, it is challenging to separate tidally induced AGN and stochastically triggered AGN in interacting galaxies.

    « less
  6. ABSTRACT

    We consider the largest sample of 561 edge-on galaxies observed with integral field units by the MaNGA survey and find 300 galaxies where the ionized gas shows a negative vertical gradient (lag) in its rotational speed. We introduce the stop altitude as the distance to the galactic mid-plane at which the gas rotation should stop in the linear approximation. We find correlations between the lags, stop altitude and galactic mass, stellar velocity dispersion, and overall Sersic index. We do not find any correlation of the lags or stop altitude with the star formation activity in the galaxies. We conclude that low-mass galaxies (log(M*/M⊙) < 10) with low-Sersic index and with low-stellar velocity dispersion possess a wider ‘zone of influence’ in the extragalactic gas surrounding them with respect to higher mass galaxies that have a significant spherical component. We estimated the trend of the vertical rotational gradient with radius and find it flat for most of the galaxies in our sample. A small subsample of galaxies with negative radial gradients of lag has an enhanced fraction of objects with aged low-surface brightness structures around them (e.g. faint shells), which indicates that noticeable accretion events in the past affected the extraplanar gas kinematicsmore »and might have contributed to negative radial lag gradients. We conclude that an isotropic accretion of gas from the circumgalactic medium plays a significant role in the formation of rotation velocity lags.

    « less
  7. ABSTRACT

    We calculate the α-enhancement ratio [α/Fe] for the Mapping Nearby Galaxies at APO (MaNGA) Stellar Library (MaStar) while also fitting for the fundamental atmospheric parameters effective temperature, surface gravity, and metallicity – Teff, log g, [Fe/H]. This approach builds upon a previous catalogue of stellar parameters, whereby only the fundamental atmospheric parameters are fit with solar-scaled models. Here, we use the same Markov Chain Monte Carlo method with the additional free parameter [α/Fe]. Using the full spectral fitting code pPXF, we are able to fit multiple lines sensitive to [α/Fe] for a more robust measurement. Quality flags based on the convergence of the sampler, errors in [α/Fe] and a cut in the χ2 of the model fit are used to clean the final catalogue, returning 17 214 spectra and values in the range of −0.25 < [α/Fe] < 0.48. Comparing our calculated [α/Fe] with literature values reveals a degeneracy in cool stars with log g ≥ ∼4; this comparison is then used to create an alternative and calibrated parameter set. We also plot the final catalogue in an [Fe/H] versus [α/Fe] diagram and recover the expected result of increasing [α/Fe] with decreasing [Fe/H] for Milky Way disc-halo stars. We applymore »our method to a subsample of spectra of uniform resolution and higher signal to noise that finds that our results are independent of this higher signal to noise. In the context of stellar population models, we are able to cover a parameter space for the creation of intermediate to old age models at solar-scaled [α/Fe], high [Fe/H] and enhanced [α/Fe], low [Fe/H].

    « less
  8. Abstract We present the first publicly released catalog of sources obtained from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX). HETDEX is an integral field spectroscopic survey designed to measure the Hubble expansion parameter and angular diameter distance at 1.88 < z < 3.52 by using the spatial distribution of more than a million Ly α -emitting galaxies over a total target area of 540 deg 2 . The catalog comes from contiguous fiber spectra coverage of 25 deg 2 of sky from 2017 January through 2020 June, where object detection is performed through two complementary detection methods: one designed to search for line emission and the other a search for continuum emission. The HETDEX public release catalog is dominated by emission-line galaxies and includes 51,863 Ly α -emitting galaxy (LAE) identifications and 123,891 [O ii ]-emitting galaxies at z < 0.5. Also included in the catalog are 37,916 stars, 5274 low-redshift ( z < 0.5) galaxies without emission lines, and 4976 active galactic nuclei. The catalog provides sky coordinates, redshifts, line identifications, classification information, line fluxes, [O ii ] and Ly α line luminosities where applicable, and spectra for all identified sources processed by the HETDEX detection pipeline. Extensive testingmore »demonstrates that HETDEX redshifts agree to within Δ z < 0.02, 96.1% of the time to those in external spectroscopic catalogs. We measure the photometric counterpart fraction in deep ancillary Hyper Suprime-Cam imaging and find that only 55.5% of the LAE sample has an r -band continuum counterpart down to a limiting magnitude of r ∼ 26.2 mag (AB) indicating that an LAE search of similar sensitivity to HETDEX with photometric preselection would miss nearly half of the HETDEX LAE catalog sample. Data access and details about the catalog can be found online at http://hetdex.org/ . A copy of the catalogs presented in this work (Version 3.2) is available to download at Zenodo doi: 10.5281/zenodo.7448504 .« less
    Free, publicly-accessible full text available February 1, 2024