skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Druga, Emanuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. Free, publicly-accessible full text available September 10, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Quantum sensors have notably advanced high-sensitivity magnetic field detection. Here, we report quantum sensors constructed from polarized spin-triplet electrons in photoexcited organic chromophores, specifically focusing on pentacene-doped para-terphenyl ( 0.1 % ) . We demonstrate essential quantum sensing properties at room temperature (RT): optically generated electronic polarization and state-dependent fluorescence contrast by leveraging differential pumping and relaxation rates between triplet and ground states. We measure high optically detected magnetic resonance contrast 16.8 % of the triplet states at RT, along with long coherence times under spin echo and Carr-Purcell-Meiboom-Gill (CPMG) sequences, T 2 = 2.7 µ s and T 2 DD = 18.4 µ s , respectively, limited only by the triplet lifetimes. The material offers several advantages for quantum sensing, including the ability to grow large (cm scale) crystals at low cost, absence of paramagnetic impurities, and electronic diamagnetism when not optically illuminated. Utilizing pentacene as a representative of a broader class of spin triplet- polarizable organic molecules, this paper highlights the potential for quantum sensing in chemical systems. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. null (Ed.)
    Multimodal imaging—the ability to acquire images of an object through more than one imaging mode simultaneously—has opened additional perspectives in areas ranging from astronomy to medicine. In this paper, we report progress toward combining optical and magnetic resonance (MR) imaging in such a “dual” imaging mode. They are attractive in combination because they offer complementary advantages of resolution and speed, especially in the context of imaging in scattering environments. Our approach relies on a specific material platform, microdiamond particles hosting nitrogen vacancy (NV) defect centers that fluoresce brightly under optical excitation and simultaneously “hyperpolarize” lattice C 13 nuclei, making them bright under MR imaging. We highlight advantages of dual-mode optical and MR imaging in allowing background-free particle imaging and describe regimes in which either mode can enhance the other. Leveraging the fact that the two imaging modes proceed in Fourier-reciprocal domains (real and k-space), we propose a sampling protocol that accelerates image reconstruction in sparse-imaging scenarios. Our work suggests interesting possibilities for the simultaneous optical and low-field MR imaging of targeted diamond nanoparticles. 
    more » « less
  6. null (Ed.)