skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Sensitive multichannel zero-to ultralow-field NMR with atomic magnetometer arrays
Despite its versatility and high chemical specificity, conventional nuclear magnetic resonance (NMR) spectroscopy is limited in measurement throughput due to the need for high-homogeneity magnetic fields, necessitating sequential sample analysis, and expensive devices. Here, we propose a multichannel NMR device that addresses these limitations by leveraging the zero-to ultralow-field (ZULF) regime, where simultaneous detection of multiple samples is carried out via an array of compact optically pumped magnetometers (OPMs). A magnetic field is used only for prepolarization, permitting the use of large-bore, high-field, inhomogeneous magnets that can accommodate multiple samples concurrently. Through systematic improvements, we demonstrate sensitive, high-resolution ZULF NMR spectroscopy with sensitivity comparable to benchtop 13C NMR systems. The spectroscopy remains robust without the need for field shimming for periods on the order of weeks. We show the detection of ZULF NMR signals from organic molecules without isotopic enrichment, and demonstrate the parallelized detection of three distinct samples simultaneously as a proof-of-concept, with the ability to scale further to over 100 channels at a cost comparable to traditional liquid state NMR systems. This work sets the stage for using multichannel “NMR camera” devices for inline reaction monitoring, robotic chemistry, quality control, and high-throughput assays.  more » « less
Award ID(s):
2231634 2141083 2320520
PAR ID:
10654030
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Thompson, Levi
Publisher / Repository:
National Academies
Date Published:
Journal Name:
PNAS Nexus
Volume:
4
Issue:
6
ISSN:
2752-6542
Subject(s) / Keyword(s):
NMR spectroscopy optically pumped magnetometers quantum sensing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is an emerging tool for precision chemical analysis. In this work, we study dynamic processes and investigate the influence of chemical exchange on ZULF NMRJ-spectra. We develop a computational approach that allows quantitative calculation ofJ-spectra in the presence of chemical exchange and apply it to study aqueous solutions of [15N]ammonium (15N$${\mathrm{H}}_4^ +$$ H 4 + ) as a model system. We show that pH-dependent chemical exchange substantially affects theJ-spectra and, in some cases, can lead to degradation and complete disappearance of the spectral features. To demonstrate potential applications of ZULF NMR for chemistry and biomedicine, we show a ZULF NMR spectrum of [2-13C]pyruvic acid hyperpolarized via dissolution dynamic nuclear polarization (dDNP). We foresee applications of affordable and scalable ZULF NMR coupled with hyperpolarization to study chemical exchange phenomena in vivo and in situations where high-field NMR detection is not possible to implement. 
    more » « less
  2. null (Ed.)
    Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical technique used to study chemicals and their transformations. However, high-eld NMR spectroscopy necessitates advanced infrastructure and even cryogen-free benchtop NMR spectrometers cannot be readily assembled from commercially available components. We demonstrate the construction of a portable zero-field NMR spectrometer employing a commercially available magnetometer and investigate its applications in analytical chemistry. In particular, J-spectra of small representative biomolecules [13C]-formic acid, [1-13C]-glycine, [2,3-13C]-fumarate, and [1-13C]-D-glucose were acquired and an approach relying on the presence of a transverse magnetic eld during the detection was investigated for relaxometry purposes. We found that water relaxation time strongly depends on the concentration of dissolved D-glucose in the range of 1-10 mM suggesting opportunities for indirect assessment of glucose concentration in aqueous solutions. Extending analytical capabilities of zero-field NMR to aqueous solutions of simple biomolecules (aminoacids, sugars and metabolites) and relaxation studies of aqueous solutions of glucose highlight the analytical potential of non-invasive and portable ZULF NMR sensors for applications outside of research laboratories. 
    more » « less
  3. null (Ed.)
    Zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is a version of NMR that allows studying molecules and their transformations in the regime dominated by intrinsic spin-spin interactions. While spin dynamics at zero magnetic field can be probed indirectly, J-spectra can also be measured at zero field by using non-inductive sensors, for example, optically-pumped magnetometers (OPMs). A J-spectrum can be detected when a molecule contains at least two different types of magnetic nuclei (i.e., nuclei with different gyromagnetic ratios) that are coupled via J-coupling. Up to date, no pure J-spectra of molecules featuring the coupling to quadrupolar nuclei were reported. Here we show that zero-field J-spectra can be collected from molecules containing quadrupolar nuclei with I = 1 and demonstrate this for solutions containing various isotopologues of ammonium cations. Lower ZULF NMR signals are observed for molecules containing larger numbers of deuterons compared to protons; this is attributed to less overall magnetization and not to the scalar relaxation of the second kind. We analyze the energy structure and allowed transitions for the studied molecular cations in detail using perturbation theory and demonstrate that in the studied systems, different lines in J-spectra have different dependencies on the magnetic pulse length allowing for unique on-demand zero-field spectral editing. Precise values for the 15N-1H, 14N-1H, and D-1H coupling constants are extracted from the spectra and the difference in the reduced coupling constants is explained by the secondary isotope effect. Simple symmetric cations such as ammonium do not require expensive isotopic labeling for the observation of J-spectra and, thus, may expand the applicability of ZULF NMR spectroscopy in biomedicine and energy storage. 
    more » « less
  4. Although reliable rechargeable batteries represent a key transformative technology for electric vehicles, portable electronics, and renewable energy, there are few nondestructive diagnostic techniques compatible with realistic commercial cell enclosures. Many battery failures result from the loss or chemical degradation of electrolyte. In this work, we present measurements through battery enclosures that allow quantification of electrolyte amount and composition. The study employs instrumentation and techniques developed in the context of zero-to-ultralow-field nuclear magnetic resonance (ZULF NMR), with optical atomic magnetometers as the detection elements. In contrast to conventional NMR methodology, which suffers from skin-depth limitations, the reduced resonance frequencies in ZULF NMR make battery housing and electrodes transparent to the electromagnetic fields involved. As demonstrated here through simulation and experiment, both the solvent and lithium-salt components of the electrolyte (LiPF6) signature could be quantified using our techniques. Further, we show that the apparatus is compatible with measurement of pouch-cell batteries. 
    more » « less
  5. Abstract We report on the utility of Radiofrequency Amplification by Stimulated Emission Radiation (RASER) for background‐free proton detection of hyperpolarized biomolecules. We performed hyperpolarization of ≈0.3 M ethyl acetate via pairwise parahydrogen addition to vinyl acetate. A proton NMR signal with signal‐to‐noise ratio exceeding 100 000 was detected without radio‐frequency excitation at the clinically relevant magnetic field of 1.4 T using a standard (non‐cryogenic) inductive detector with quality factor ofQ=68. No proton background signal was observed from protonated solvent (methanol) or other added co‐solvents such as ethanol, water or bovine serum. Moreover, we demonstrate RASER detection without radio‐frequency excitation of a bolus of hyperpolarized contrast agent in biological fluid. Completely background‐free proton detection of hyperpolarized contrast agents in biological media paves the way to new applications in the areas of high‐resolution NMR spectroscopy and in vivo spectroscopy and imaging. 
    more » « less