Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 27, 2025
-
To facilitate dynamic spectrum sharing, the FCC has designated certified SAS administrators to implement their own spectrum access systems (SASs) that manage the shared spectrum usage in the novel CBRS band. As a premise, different SAS servers must conduct periodic inter-SAS coordination to synchronize service states and avoid allocation conflicts. However, SAS servers may inevitably stop service for regular upgrades, crash down, or even perform maliciously that deviate from the normal routines, posing a fundamental operation security problem — the system shall be robust against these faults to guarantee secure and efficient spectrum sharing service. Unfortunately, the incumbent inter-SAS coordination mechanism, CPAS, is prone to SAS failures and does not support real-time allocation. Recent proposals that rely on blockchain smart contracts or state machine replication mechanisms to realize fault-tolerant inter-SAS coordination require all SASs to follow a unified allocation algorithm. They however face performance bottlenecks and cannot accommodate the current fact that different SASs hold their own proprietary allocation algorithms. In this work, we propose TriSAS—a novel inter-SAS coordination mechanism to facilitate secure, efficient, and dependable spectrum allocation that is fully compatible with the existing SAS infrastructure. TriSAS decomposes the coordination process into two phases including input synchronization and decision finalization. The firstphase ensures participants share a common input set while the second one fulfills a fair and verifiable spectrum allocation selec- tion, which is generated efficiently via SAS proposers’ proprietary allocation algorithms and evaluated by a customized designed allocation evaluation algorithm (AEA), in the face of no more than one-third of malicious participants. We implemented a prototype of TriSAS on the AWS cloud computing platform and evaluated its throughput and latency performance. The results show that TriSAS achieves high transaction throughput and low latency under various practical settings.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Mobile tracking has long been a privacy problem, where the geographic data and timestamps gathered by mobile network operators (MNOs) are used to track the locations and movements of mobile subscribers. Additionally, selling the geolocation information of subscribers has become a lucrative business. Many mobile carriers have violated user privacy agreements by selling users’ location history to third parties without user consent, exacerbating privacy issues related to mobile tracking and profiling. This paper presents AAKA, an anonymous authentication and key agreement scheme designed to protect against mobile tracking by honest-but-curious MNOs. AAKA leverages anonymous credentials and introduces a novel mobile authentication protocol that allows legitimate subscribers to access the network anonymously, without revealing their unique (real) IDs. It ensures the integrity of user credentials, preventing forgery, and ensures that connections made by the same user at different times cannot be linked. While the MNO alone cannot identify or profile a user, AAKA enables identification of a user under legal intervention, such as when the MNOs collaborate with an authorized law enforcement agency. Our design is compatible with the latest cellular architecture and SIM standardized by 3GPP, meeting 3GPP’s fundamental security requirements for User Equipment (UE) authentication and key agreement processes. A comprehensive security analysis demonstrates the scheme’s effectiveness. The evaluation shows that the scheme is practical, with a credential presentation generation taking∼ 52 ms on a constrained host device equipped with a standard cellular SIM.more » « lessFree, publicly-accessible full text available February 26, 2025
-
Free, publicly-accessible full text available October 30, 2024
-
Telephone users are receiving more and more unwanted calls including spam and scam calls because of the transfer-without-verification nature of global telephone networks, which allows anyone to call any other numbers. To avoid unwanted calls, telephone users often ignore or block all incoming calls from unknown numbers, resulting in the missing of legitimate calls from new callers. This paper takes an end-to-end perspective to present a solution to block unwanted calls while allowing users to define the policies of acceptable calls. The proposed solution involves a new infrastructure based on anonymous credentials, which enables anonymous caller authentication and policy definition. Our design decouples caller authentication and call session initiation and introduces a verification code to interface and bind the two processes. This design minimizes changes to telephone networks, reduces latency to call initiation, and eliminates the need for a call-time data channel. A prototype of the system is implemented to evaluate its feasibility.more » « less