Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Impedance-matching networks affect power transfer from the radio frequency (RF) chains to the antennas. Their design impacts the signal to noise ratio (SNR) and the achievable rate. In this paper, we maximize the information-theoretic achievable rate of a multiple-input-single-output (MISO) system with wideband matching constraints. Using a multiport circuit theory approach with frequency-selective scattering parameters, we propose a general framework for optimizing the MISO achievable rate that incorporates Bode-Fano wideband matching theory. We express the solution to the achievable rate optimization problem in terms of the optimized transmission coefficient and the Lagrangian parameters corresponding to the Bode-Fano inequality constraints. We apply this framework to a single electric Chu’s antenna and an array of dipole antennas. We compare the optimized achievable rate obtained numerically with other benchmarks like the ideal achievable rate computed by disregarding matching constraints and the achievable rate obtained by using sub-optimal matching strategies like conjugate matching and frequency-flat transmission. We also propose a practical methodology to approximate the achievable rate bound by using the optimal transmission coefficient to derive a physically realizable matching network through the ADS software.more » « lessFree, publicly-accessible full text available May 20, 2025
-
Conventional achievable rate analysis using Shan- non’s theory does not assume practical constraints imposed by Bode-Fano wideband matching theory. This leads to an achiev- able rate bound that cannot be attained by practical matching networks. In this paper, we generalize the information-theoretic achievable rate of a single-input-single-output (SISO) system by incorporating wideband matching constraints at the transmitter. We express the solution to the achievable rate optimization problem in terms of the optimized transmission coefficient and the Lagrangian parameters corresponding to the Bode-Fano inequality constraints. We also propose a practical strategy to design a physically realizable matching network through the ADS software which attains the achievable rate bound with near- optimality. In simulations, we apply this framework to a Chu’s antenna and compare the achievable rate performance with the conventional conjugate matching strategy.more » « less
-
Free, publicly-accessible full text available January 1, 2025
-
In the US, people spend 87% of their time indoors and have an average of four connected devices per person (in 2020). As such, providing indoor coverage has always been a challenge but becomes even more difficult as carrier frequencies increase to mmWave and beyond. This paper investigates the outdoor and outdoor-indoor coverage of an urban network comparing globally standardized building penetration models and implementing models to corresponding scenarios. The glass used in windows of buildings in the grid plays a pivotal role in determining the outdoor-to-indoor propagation loss. For 28 GHz with 1 W/polarization transmit power in the urban street grid, the downlink data rates for 90% of outdoor users are estimated at over 250 Mbps. In contrast, 15% of indoor users are estimated to be in outage, with SNR < −3 dB when base stations are 400 m apart with one-fifth of the buildings imposing high penetration loss (∼ 35 dB). At 3.5 GHz, base stations may achieve over 250 Mbps for 90% indoor users if 400 MHz bandwidth with 100 W/polarization transmit power is available. The methods and models presented can be used to facilitate decisions regarding the density and transmit power required to provide high data rates to majority users in urban centers.more » « less
-
Outdoor-to-indoor (OtI) signal propagation further challenges link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWaveat28GHz, we conducted an extensive measurement campaign consisting of over 2,000 link measurements in West Harlem, NewYorkCity, covering seven highly diverse buildings. A path loss model constructed over all links shows an average of 30dB excess loss over free space at distances beyond 50m. We find the type of glass to be the dominant factor in OtI loss, with 20dB observed difference between clustered scenarios with low- and high-loss glass. Other factors, such as difference in floor height, are found to have an impact between 5ś10dB. We show that for urban buildings with high-loss glass, OtI data rates up to 400Mb/s are supported for 90% of indoor users by a base station (BS) up to 49m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.8/1.4Gb/s are possible from a BS 68/175m away when a line-of-sight path is available. We expect these results to be useful for the deployment of OtI mmWave networks in dense urban environments and the development of scheduling and beam management algorithms.more » « less