skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Average Backscatter Clutter Power for RF Sensing Applications in Indoor Environments
A simple model for average backscatter power from clutter is developed for indoor RF sensing applications and verified through measurements. A narrowband 28 GHz sounder used a quasi-monostatic radar arrangement with an omnidirectional transmit antenna illuminating an indoor scene and a spinning horn receive antenna less than 1 m away collecting backscattered power as a function of azimuth. Median average backscatter power was found to vary over a 12 dB range, with average power generally decreasing with increasing room size. A deterministic model of average backscattered power dependent on distance to nearest wall and clutter reflection coefficient reproduces observations with 4.0 dB RMS error.  more » « less
Award ID(s):
2232455 2148128
PAR ID:
10565021
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-4818-7
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Location:
Tel Aviv, Israel
Sponsoring Org:
National Science Foundation
More Like this
  1. Backscatter power measurements are collected to characterize indoor radar clutter in monostatic sensing applications. A narrowband 28 GHz sounder used a quasimonostatic radar arrangement with an omnidirectional transmit antenna illuminating an indoor scene and a spinning horn receive antenna offset vertically (less than 1 m away) collecting backscattered power as a function of azimuth. Power variation in azimuth around the local average is found to be within 1 dB of a lognormal distribution with a standard deviation of 6.8 dB. Backscatter azimuth spectra are found to be highly variable with location, with cross-correlation coefficients on the order of 0.3 at separations as small as 0.1 m. These statistics are needed for system-level evaluation of RF sensing performance. 
    more » « less
  2. Backscatter power measurements are collected to characterize indoor radar clutter in monostatic sensing applications. A narrowband 28 GHz sounder used a quasi-monostatic radar arrangement with an omnidirectional transmit antenna illuminating an indoor scene and a spinning horn receive antenna offset vertically (less than 1 m away) collecting backscattered power as a function of azimuth. Power variation in azimuth around the local average is found to be within 1 dB of a lognormal distribution with a standard deviation of 6.8 dB. Backscatter azimuth spectra are found to be highly variable with location, with cross-correlation coefficients on the order of 0.3 at separations as small as 0.1 m. These statistics are needed for system-level evaluation of RF sensing performance. 
    more » « less
  3. Radar sounding is a powerful tool for constraining subglacial conditions, which influence the mass balance of polar ice sheets and their contributions to global sea-level rise. A satellite-based radar sounder, such as those successfully demonstrated at Mars, would offer unprecedented spatial and temporal coverage of the subsurface. However, airborne sounding studies suggest that poorly constrained radar scattering in polar firn may produce performance-limiting clutter for terrestrial orbital sounders. We develop glaciologically constrained electromagnetic models of radar interactions in firn, test them against in situ data and multifrequency airborne radar observations, and apply the only model we find to be consistent with observation to assess the implications of firn clutter for orbital sounder system design. Our results show that in the very high-frequency (VHF) and ultrahigh-frequency (UHF) bands, radar interactions in the firn are dominated by quasi-specular reflections at the interfaces between layers of different densities and that off-nadir backscatter is likely the result of small-scale roughness in the subsurface density profiles. As a result, high frequency (HF) or low VHF center frequencies offer a significant advantage in near-surface clutter suppression compared to the UHF band. However, the noise power is the dominant constraint in all bands, so the near-surface clutter primarily constrains the extent to which the transmit power, pulselength, or antenna gain can be engineered to improve the signal-to-noise ratio. Our analysis suggests that the deep interior of terrestrial ice sheets is a difficult target for orbital sounding, which may require optimizations in azimuth processing and cross-track clutter suppression which complement existing requirements for sounding at the margins. 
    more » « less
  4. Outdoor-to-indoor (OtI) signal propagation further challenges the already tight link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWave scenarios at 28 GHz, we conducted an extensive measurement campaign consisting of over 2,200 link measurements. In total, 43 OtI scenarios were measured in West Harlem, New York City, covering seven highly diverse buildings. The measured OtI path gain can vary by up to 40 dB for a given link distance, and the empirical path gain model for all data shows an average of 30 dB excess loss over free space at distances beyond 50 m, with an RMS fitting error of 11.7 dB. The type of glass is found to be the single dominant feature for OtI loss, with 20 dB observed difference between empirical path gain models for scenarios with low-loss and high-loss glass. The presence of scaffolding, tree foliage, or elevated subway tracks, as well as difference in floor height are each found to have an impact between 5–10 dB. We show that for urban buildings with high-loss glass, OtI coverage can support 500 Mbps for 90% of indoor user equipment (UEs) with a base station (BS) antenna placed up to 49 m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.5/1.2 Gbps are possible from a BS 68/175 m away from the school building, when a line-of-sight path is available. We expect these results to be useful for the deployment of mmWave networks in dense urban environments as well as the develop 
    more » « less
  5. In the US, people spend 87% of their time indoors and have an average of four connected devices per person (in 2020). As such, providing indoor coverage has always been a challenge but becomes even more difficult as carrier frequencies increase to mmWave and beyond. This paper investigates the outdoor and outdoor-indoor coverage of an urban network comparing globally standardized building penetration models and implementing models to corresponding scenarios. The glass used in windows of buildings in the grid plays a pivotal role in determining the outdoor-to-indoor propagation loss. For 28 GHz with 1 W/polarization transmit power in the urban street grid, the downlink data rates for 90% of outdoor users are estimated at over 250 Mbps. In contrast, 15% of indoor users are estimated to be in outage, with SNR < −3 dB when base stations are 400 m apart with one-fifth of the buildings imposing high penetration loss (∼ 35 dB). At 3.5 GHz, base stations may achieve over 250 Mbps for 90% indoor users if 400 MHz bandwidth with 100 W/polarization transmit power is available. The methods and models presented can be used to facilitate decisions regarding the density and transmit power required to provide high data rates to majority users in urban centers. 
    more » « less