Vertical profiles of temperature and dewpoint are useful in predicting deep convection that leads to severe weather, which threatens property and lives. Currently, forecasters rely on observations from radiosonde launches and numerical weather prediction (NWP) models. Radiosonde observations are, however, temporally and spatially sparse, and NWP models contain inherent errors that influence short-term predictions of high impact events. This work explores using machine learning (ML) to postprocess NWP model forecasts, combining them with satellite data to improve vertical profiles of temperature and dewpoint. We focus on different ML architectures, loss functions, and input features to optimize predictions. Because we are predicting vertical profiles at 256 levels in the atmosphere, this work provides a unique perspective at using ML for 1D tasks. Compared to baseline profiles from the Rapid Refresh (RAP), ML predictions offer the largest improvement for dewpoint, particularly in the middle and upper atmosphere. Temperature improvements are modest, but CAPE values are improved by up to 40%. Feature importance analyses indicate that the ML models are primarily improving incoming RAP biases. While additional model and satellite data offer some improvement to the predictions, architecture choice is more important than feature selection in fine-tuning the results. Our proposed deep residual U-Net performs the best by leveraging spatial context from the input RAP profiles; however, the results are remarkably robust across model architecture. Further, uncertainty estimates for every level are well calibrated and can provide useful information to forecasters.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available January 1, 2025 -
Abstract Artificial intelligence (AI) can be used to improve performance across a wide range of Earth system prediction tasks. As with any application of AI, it is important for AI to be developed in an ethical and responsible manner to minimize bias and other effects. In this work, we extend our previous work demonstrating how AI can go wrong with weather and climate applications by presenting a categorization of bias for AI in the Earth sciences. This categorization can assist AI developers to identify potential biases that can affect their model throughout the AI development life cycle. We highlight examples from a variety of Earth system prediction tasks of each category of bias.
Free, publicly-accessible full text available March 1, 2025 -
Abstract Demands to manage the risks of artificial intelligence (AI) are growing. These demands and the government standards arising from them both call for trustworthy AI. In response, we adopt a convergent approach to review, evaluate, and synthesize research on the trust and trustworthiness of AI in the environmental sciences and propose a research agenda. Evidential and conceptual histories of research on trust and trustworthiness reveal persisting ambiguities and measurement shortcomings related to inconsistent attention to the contextual and social dependencies and dynamics of trust. Potentially underappreciated in the development of trustworthy AI for environmental sciences is the importance of engaging AI users and other stakeholders, which human–AI teaming perspectives on AI development similarly underscore. Co‐development strategies may also help reconcile efforts to develop performance‐based trustworthiness standards with dynamic and contextual notions of trust. We illustrate the importance of these themes with applied examples and show how insights from research on trust and the communication of risk and uncertainty can help advance the understanding of trust and trustworthiness of AI in the environmental sciences.
Free, publicly-accessible full text available June 1, 2025 -
Abstract Atmospheric processes involve both space and time. Thus, humans looking at atmospheric imagery can often spot important signals in an animated loop of an image sequence not apparent in an individual (static) image. Utilizing such signals with automated algorithms requires the ability to identify complex spatiotemporal patterns in image sequences. That is a very challenging task due to the endless possibilities of patterns in both space and time. Here, we review different concepts and techniques that are useful to extract spatiotemporal signals from meteorological image sequences to expand the effectiveness of AI algorithms for classification and prediction tasks. We first present two applications that motivate the need for these approaches in meteorology, namely the detection of convection from satellite imagery and solar forecasting. Then we provide an overview of concepts and techniques that are helpful for the interpretation of meteorological image sequences, such as (a) feature engineering methods using (i) meteorological knowledge, (ii) classic image processing, (iii) harmonic analysis, and (iv) topological data analysis; (b) ways to use convolutional neural networks for this purpose with emphasis on discussing different convolution filters (2D/3D/LSTM-convolution); and (c) a brief survey of several other concepts, including the concept of “attention” in neural networks and its utility for the interpretation of image sequences and strategies from self-supervised and transfer learning to reduce the need for large labeled datasets. We hope that presenting an overview of these tools—many of which are not new but underutilized in this context—will accelerate progress in this area.
-
Superresolution of GOES-16 ABI Bands to a Common High Resolution with a Convolutional Neural Network
Abstract Superresolution is the general task of artificially increasing the spatial resolution of an image. The recent surge in machine learning (ML) research has yielded many promising ML-based approaches for performing single-image superresolution including applications to satellite remote sensing. We develop a convolutional neural network (CNN) to superresolve the 1- and 2-km bands on the GOES-R series Advanced Baseline Imager (ABI) to a common high resolution of 0.5 km. Access to 0.5-km imagery from ABI band 2 enables the CNN to realistically sharpen lower-resolution bands without significant blurring. We first train the CNN on a proxy task, which allows us to only use ABI imagery, namely, degrading the resolution of ABI bands and training the CNN to restore the original imagery. Comparisons at reduced resolution and at full resolution with
Landsat-8/Landsat-9 observations illustrate that the CNN produces images with realistic high-frequency detail that is not present in a bicubic interpolation baseline. Estimating all ABI bands at 0.5-km resolution allows for more easily combining information across bands without reconciling differences in spatial resolution. However, more analysis is needed to determine impacts on derived products or multispectral imagery that use superresolved bands. This approach is extensible to other remote sensing instruments that have bands with different spatial resolutions and requires only a small amount of data and knowledge of each channel’s modulation transfer function.Significance Statement Satellite remote sensing instruments often have bands with different spatial resolutions. This work shows that we can artificially increase the resolution of some lower-resolution bands by taking advantage of the texture of higher-resolution bands on the
GOES-16 ABI instrument using a convolutional neural network. This may help reconcile differences in spatial resolution when combining information across bands, but future analysis is needed to precisely determine impacts on derived products that might use superresolved bands. -
Abstract Convolutional neural networks (CNNs) have recently attracted great attention in geoscience due to their ability to capture non-linear system behavior and extract predictive spatiotemporal patterns. Given their black-box nature however, and the importance of prediction explainability, methods of explainable artificial intelligence (XAI) are gaining popularity as a means to explain the CNN decision-making strategy. Here, we establish an intercomparison of some of the most popular XAI methods and investigate their fidelity in explaining CNN decisions for geoscientific applications. Our goal is to raise awareness of the theoretical limitations of these methods and gain insight into the relative strengths and weaknesses to help guide best practices. The considered XAI methods are first applied to an idealized attribution benchmark, where the ground truth of explanation of the network is known a priori , to help objectively assess their performance. Secondly, we apply XAI to a climate-related prediction setting, namely to explain a CNN that is trained to predict the number of atmospheric rivers in daily snapshots of climate simulations. Our results highlight several important issues of XAI methods (e.g., gradient shattering, inability to distinguish the sign of attribution, ignorance to zero input) that have previously been overlooked in our field and, if not considered cautiously, may lead to a distorted picture of the CNN decision-making strategy. We envision that our analysis will motivate further investigation into XAI fidelity and will help towards a cautious implementation of XAI in geoscience, which can lead to further exploitation of CNNs and deep learning for prediction problems.more » « less
-
Abstract Many of our generation’s most pressing environmental science problems are wicked problems, which means they cannot be cleanly isolated and solved with a single ‘correct’ answer (e.g., Rittel 1973; Wirz 2021). The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) seeks to address such problems by developing synergistic approaches with a team of scientists from three disciplines: environmental science (including atmospheric, ocean, and other physical sciences), AI, and social science including risk communication. As part of our work, we developed a novel approach to summer school, held from June 27-30, 2022. The goal of this summer school was to teach a new generation of environmental scientists how to cross disciplines and develop approaches that integrate all three disciplinary perspectives and approaches in order to solve environmental science problems. In addition to a lecture series that focused on the synthesis of AI, environmental science, and risk communication, this year’s summer school included a unique Trust-a-thon component where participants gained hands-on experience applying both risk communication and explainable AI techniques to pre-trained ML models. We had 677 participants from 63 countries register and attend online. Lecture topics included trust and trustworthiness (Day 1), explainability and interpretability (Day 2), data and workflows (Day 3), and uncertainty quantification (Day 4). For the Trust-a-thon we developed challenge problems for three different application domains: (1) severe storms, (2) tropical cyclones, and (3) space weather. Each domain had associated user persona to guide user-centered development.more » « less
-
Abstract Assessing forced climate change requires the extraction of the forced signal from the background of climate noise. Traditionally, tools for extracting forced climate change signals have focused on one atmospheric variable at a time, however, using multiple variables can reduce noise and allow for easier detection of the forced response. Following previous work, we train artificial neural networks to predict the year of single‐ and multi‐variable maps from forced climate model simulations. To perform this task, the neural networks learn patterns that allow them to discriminate between maps from different years—that is, the neural networks learn the patterns of the forced signal amidst the shroud of internal variability and climate model disagreement. When presented with combined input fields (multiple seasons, variables, or both), the neural networks are able to detect the signal of forced change earlier than when given single fields alone by utilizing complex, nonlinear relationships between multiple variables and seasons. We use layer‐wise relevance propagation, a neural network explainability tool, to identify the multivariate patterns learned by the neural networks that serve as reliable indicators of the forced response. These “indicator patterns” vary in time and between climate models, providing a template for investigating inter‐model differences in the time evolution of the forced response. This work demonstrates how neural networks and their explainability tools can be harnessed to identify patterns of the forced signal within combined fields.
-
Abstract Despite the increasingly successful application of neural networks to many problems in the geosciences, their complex and nonlinear structure makes the interpretation of their predictions difficult, which limits model trust and does not allow scientists to gain physical insights about the problem at hand. Many different methods have been introduced in the emerging field of eXplainable Artificial Intelligence (XAI), which aims at attributing the network’s prediction to specific features in the input domain. XAI methods are usually assessed by using benchmark datasets (such as MNIST or ImageNet for image classification). However, an objective, theoretically derived ground truth for the attribution is lacking for most of these datasets, making the assessment of XAI in many cases subjective. Also, benchmark datasets specifically designed for problems in geosciences are rare. Here, we provide a framework, based on the use of additively separable functions, to generate attribution benchmark datasets for regression problems for which the ground truth of the attribution is known a priori. We generate a large benchmark dataset and train a fully connected network to learn the underlying function that was used for simulation. We then compare estimated heatmaps from different XAI methods to the ground truth in order to identify examples where specific XAI methods perform well or poorly. We believe that attribution benchmarks as the ones introduced herein are of great importance for further application of neural networks in the geosciences, and for more objective assessment and accurate implementation of XAI methods, which will increase model trust and assist in discovering new science.more » « less
-
Abstract Given the growing use of Artificial intelligence (AI) and machine learning (ML) methods across all aspects of environmental sciences, it is imperative that we initiate a discussion about the ethical and responsible use of AI. In fact, much can be learned from other domains where AI was introduced, often with the best of intentions, yet often led to unintended societal consequences, such as hard coding racial bias in the criminal justice system or increasing economic inequality through the financial system. A common misconception is that the environmental sciences are immune to such unintended consequences when AI is being used, as most data come from observations, and AI algorithms are based on mathematical formulas, which are often seen as objective. In this article, we argue the opposite can be the case. Using specific examples, we demonstrate many ways in which the use of AI can introduce similar consequences in the environmental sciences. This article will stimulate discussion and research efforts in this direction. As a community, we should avoid repeating any foreseeable mistakes made in other domains through the introduction of AI. In fact, with proper precautions, AI can be a great tool to help
reduce climate and environmental injustice. We primarily focus on weather and climate examples but the conclusions apply broadly across the environmental sciences.