This project developed a pre-interview survey, interview protocols, and materials for conducting interviews with expert users to better understand how they assess and make use decisions about new AI/ML guidance. Weather forecasters access and synthesize myriad sources of information when forecasting for high-impact, severe weather events. In recent years, artificial intelligence (AI) techniques have increasingly been used to produce new guidance tools with the goal of aiding weather forecasting, including for severe weather. For this study, we leveraged these advances to explore how National Weather Service (NWS) forecasters perceive the use of new AI guidance for forecasting severe hail and storm mode. We also specifically examine which guidance features are important for how forecasters assess the trustworthiness of new AI guidance. To this aim, we conducted online, structured interviews with NWS forecasters from across the Eastern, Central, and Southern Regions. The interviews covered the forecasters’ approaches and challenges for forecasting severe weather, perceptions of AI and its use in forecasting, and reactions to one of two experimental (i.e., non-operational) AI severe weather guidance: probability of severe hail or probability of storm mode. During the interview, the forecasters went through a self-guided review of different sets of information about the development (spin-up information, AI model technique, training of AI model, input information) and performance (verification metrics, interactive output, output comparison to operational guidance) of the presented guidance. The forecasters then assessed how the information influenced their perception of how trustworthy the guidance was and whether or not they would consider using it for forecasting. This project includes the pre-interview survey, survey data, interview protocols, and accompanying information boards used for the interviews. There is one set of interview materials in which AI/ML are mentioned throughout and another set where AI/ML were only mentioned at the end of the interviews. We did this to better understand how the label “AI/ML” did or did not affect how interviewees responded to interview questions and reviewed the information board. We also leverage think aloud methods with the information board, the instructions for which are included in the interview protocols.
more »
« less
Interviews with NWS Forecasters related to severe weather and new artificial intelligence/machine learning (AI/ML) guidance predicting severe hail and storm mode: Interview materials for “AI/ML” version:Subtitle
This project developed a pre-interview survey, interview protocols, and materials for conducting interviews with expert users to better understand how they assess and make use decisions about new AI/ML guidance. Weather forecasters access and synthesize myriad sources of information when forecasting for high-impact, severe weather events. In recent years, artificial intelligence (AI) techniques have increasingly been used to produce new guidance tools with the goal of aiding weather forecasting, including for severe weather. For this study, we leveraged these advances to explore how National Weather Service (NWS) forecasters perceive the use of new AI guidance for forecasting severe hail and storm mode. We also specifically examine which guidance features are important for how forecasters assess the trustworthiness of new AI guidance. To this aim, we conducted online, structured interviews with NWS forecasters from across the Eastern, Central, and Southern Regions. The interviews covered the forecasters’ approaches and challenges for forecasting severe weather, perceptions of AI and its use in forecasting, and reactions to one of two experimental (i.e., non-operational) AI severe weather guidance: probability of severe hail or probability of storm mode. During the interview, the forecasters went through a self-guided review of different sets of information about the development (spin-up information, AI model technique, training of AI model, input information) and performance (verification metrics, interactive output, output comparison to operational guidance) of the presented guidance. The forecasters then assessed how the information influenced their perception of how trustworthy the guidance was and whether or not they would consider using it for forecasting. This project includes the pre-interview survey, survey data, interview protocols, and accompanying information boards used for the interviews. There is one set of interview materials in which AI/ML are mentioned throughout and another set where AI/ML were only mentioned at the end of the interviews. We did this to better understand how the label “AI/ML” did or did not affect how interviewees responded to interview questions and reviewed the information board. We also leverage think aloud methods with the information board, the instructions for which are included in the interview protocols.
more »
« less
- Award ID(s):
- 2019758
- PAR ID:
- 10567251
- Publisher / Repository:
- Designsafe-CI
- Date Published:
- Format(s):
- Medium: X
- Institution:
- University of Washington washingtonedu
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This project developed a pre-interview survey, interview protocols, and materials for conducting interviews with expert users to better understand how they assess and make use decisions about new AI/ML guidance. Weather forecasters access and synthesize myriad sources of information when forecasting for high-impact, severe weather events. In recent years, artificial intelligence (AI) techniques have increasingly been used to produce new guidance tools with the goal of aiding weather forecasting, including for severe weather. For this study, we leveraged these advances to explore how National Weather Service (NWS) forecasters perceive the use of new AI guidance for forecasting severe hail and storm mode. We also specifically examine which guidance features are important for how forecasters assess the trustworthiness of new AI guidance. To this aim, we conducted online, structured interviews with NWS forecasters from across the Eastern, Central, and Southern Regions. The interviews covered the forecasters’ approaches and challenges for forecasting severe weather, perceptions of AI and its use in forecasting, and reactions to one of two experimental (i.e., non-operational) AI severe weather guidance: probability of severe hail or probability of storm mode. During the interview, the forecasters went through a self-guided review of different sets of information about the development (spin-up information, AI model technique, training of AI model, input information) and performance (verification metrics, interactive output, output comparison to operational guidance) of the presented guidance. The forecasters then assessed how the information influenced their perception of how trustworthy the guidance was and whether or not they would consider using it for forecasting. This project includes the pre-interview survey, survey data, interview protocols, and accompanying information boards used for the interviews. There is one set of interview materials in which AI/ML are mentioned throughout and another set where AI/ML were only mentioned at the end of the interviews. We did this to better understand how the label “AI/ML” did or did not affect how interviewees responded to interview questions and reviewed the information board. We also leverage think aloud methods with the information board, the instructions for which are included in the interview protocols.more » « less
-
Abstract Artificial intelligence and machine learning (AI/ML) have attracted a great deal of attention from the atmospheric science community. The explosion of attention on AI/ML development carries implications for the operational community, prompting questions about how novel AI/ML advancements will translate from research into operations. However, the field lacks empirical evidence on how National Weather Service (NWS) forecasters, as key intended users, perceive AI/ML and its use in operational forecasting. This study addresses this crucial gap through structured interviews conducted with 29 NWS forecasters from October 2021 through July 2023 in which we explored their perceptions of AI/ML in forecasting. We found that forecasters generally prefer the term “machine learning” over “artificial intelligence” and that labeling a product as being AI/ML did not hurt perceptions of the products and made some forecasters more excited about the product. Forecasters also had a wide range of familiarity with AI/ML, and overall, they were (tentatively) open to the use of AI/ML in forecasting. We also provide examples of specific areas related to AI/ML that forecasters are excited or hopeful about and that they are concerned or worried about. One concern that was raised in several ways was that AI/ML could replace forecasters or remove them from the forecasting process. However, forecasters expressed a widespread and deep commitment to the best possible forecasts and services to uphold the agency mission using whatever tools or products that are available to assist them. Last, we note how forecasters’ perceptions evolved over the course of the study.more » « less
-
Abstract As artificial intelligence (AI) methods are increasingly used to develop new guidance intended for operational use by forecasters, it is critical to evaluate whether forecasters deem the guidance trustworthy. Past trust-related AI research suggests that certain attributes (e.g., understanding how the AI was trained, interactivity, and performance) contribute to users perceiving the AI as trustworthy. However, little research has been done to examine the role of these and other attributes for weather forecasters. In this study, we conducted 16 online interviews with National Weather Service (NWS) forecasters to examine (i) how they make guidance use decisions and (ii) how the AI model technique used, training, input variables, performance, and developers as well as interacting with the model output influenced their assessments of trustworthiness of new guidance. The interviews pertained to either a random forest model predicting the probability of severe hail or a 2D convolutional neural network model predicting the probability of storm mode. When taken as a whole, our findings illustrate how forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically or at first introduction. We recommend developers center end users when creating new AI guidance tools, making end users integral to their thinking and efforts. This approach is essential for the development of useful andusedtools. The details of these findings can help AI developers understand how forecasters perceive AI guidance and inform AI development and refinement efforts. Significance StatementWe used a mixed-methods quantitative and qualitative approach to understand how National Weather Service (NWS) forecasters 1) make guidance use decisions within their operational forecasting process and 2) assess the trustworthiness of prototype guidance developed using artificial intelligence (AI). When taken as a whole, our findings illustrate that forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically and suggest that developers must center the end user when creating new AI guidance tools to ensure that the developed tools are useful andused.more » « less
-
Abstract A primary goal of the National Oceanic and Atmospheric Administration Warn-on-Forecast (WoF) project is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0–3 h) severe weather forecasts. Postprocessing is required to maximize the usefulness of probabilistic guidance from an ensemble of convection-allowing model forecasts. Machine learning (ML) models have become popular methods for postprocessing severe weather guidance since they can leverage numerous variables to discover useful patterns in complex datasets. In this study, we develop and evaluate a series of ML models to produce calibrated, probabilistic severe weather guidance from WoF System (WoFS) output. Our dataset includes WoFS ensemble forecasts available every 5 min out to 150 min of lead time from the 2017–19 NOAA Hazardous Weather Testbed Spring Forecasting Experiments (81 dates). Using a novel ensemble storm-track identification method, we extracted three sets of predictors from the WoFS forecasts: intrastorm state variables, near-storm environment variables, and morphological attributes of the ensemble storm tracks. We then trained random forests, gradient-boosted trees, and logistic regression algorithms to predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe wind report. To provide rigorous baselines against which to evaluate the skill of the ML models, we extracted the ensemble probabilities of hazard-relevant WoFS variables exceeding tuned thresholds from each ensemble storm track. The three ML algorithms discriminated well for all three hazards and produced more reliable probabilities than the baseline predictions. Overall, the results suggest that ML-based postprocessing of dynamical ensemble output can improve short-term, storm-scale severe weather probabilistic guidance.more » « less