skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eckhardt, Josh D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unmanned Aerial Vehicles (UAVs) find increasing use in mission critical tasks both in civilian and military operations. Most UAVs rely on Inertial Measurement Units (IMUs) to calculate vehicle attitude and track vehicle position. Therefore, an incorrect IMU reading can cause a vehicle to destabilize, and possibly even crash. In this paper, we describe how a strategic adversary might be able to introduce spurious IMU values that can deviate a vehicle from its mission-specified path while at the same time evade customary anomaly detection mechanisms, thereby effectively perpetuating a “stealthy attack” on the system. We explore the feasibility of a Deep Neural Network (DNN) that uses a vehicle's state information to calculate the applicable IMU values to perpetrate such an attack. The eventual goal is to cause a vehicle to perturb enough from its mission parameters to compromise mission reliability, while, from the operator's perspective, the vehicle still appears to be operating normally. 
    more » « less