skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eden, Alon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study truthful mechanisms for approximating the Maximin-Share (MMS) allocation of agents with additive valuations for indivisible goods. Algorithmically, constant factor approximations exist for the problem for any number of agents. When adding incentives to the mix, a jarring result by Amanatidis, Birmpas, Christodoulou, and Markakis [EC 2017] shows that the best possible approximation for two agents and m items is ⌊m2⌋. We adopt a learning-augmented framework to investigate what is possible when some prediction on the input is given. For two agents, we give a truthful mechanism that takes agents' ordering over items as prediction. When the prediction is accurate, we give a 2-approximation to the MMS (consistency), and when the prediction is off, we still get an ⌈m2⌉-approximation to the MMS (robustness). We further show that the mechanism's performance degrades gracefully in the number of mistakes" in the prediction; i.e., we interpolate (up to constant factors) between the two extremes: when there are no mistakes, and when there is a maximum number of mistakes. We also show an impossibility result on the obtainable consistency for mechanisms with finite robustness. For the general case of n≥2 agents, we give a 2-approximation mechanism for accurate predictions, with relaxed fallback guarantees. Finally, we give experimental results which illustrate when different components of our framework, made to insure consistency and robustness, come into play. 
    more » « less
    Free, publicly-accessible full text available December 10, 2025
  2. The celebrated model of auctions with interdependent valuations, introduced by Milgrom and Weber in 1982, has been studied almost exclusively under private signals $$s_1, \ldots, s_n$$ of the $$n$$ bidders and public valuation functions $$v_i(s_1, \ldots, s_n)$$. Recent work in TCS has shown that this setting admits a constant approximation to the optimal social welfare if the valuations satisfy a natural property called submodularity over signals (SOS). More recently, Eden et al. (2022) have extended the analysis of interdependent valuations to include settings with private signals and \emph{private valuations}, and established $$O(\log^2 n)$$-approximation for SOS valuations. In this paper we show that this setting admits a {\em constant} factor approximation, settling the open question raised by Eden et al. (2022). 
    more » « less
  3. We study combinatorial auctions with interdependent valuations, where each agent i has a private signal sithat captures her private information and the valuation function of every agent depends on the entire signal profile, [Formula: see text]. The literature in economics shows that the interdependent model gives rise to strong impossibility results and identifies assumptions under which optimal solutions can be attained. The computer science literature provides approximation results for simple single-parameter settings (mostly single-item auctions or matroid feasibility constraints). Both bodies of literature focus largely on valuations satisfying a technical condition termed single crossing (or variants thereof). We consider the class of submodular over signals (SOS) valuations (without imposing any single crossing-type assumption) and provide the first welfare approximation guarantees for multidimensional combinatorial auctions achieved by universally ex post incentive-compatible, individually rational mechanisms. Our main results are (i) four approximation for any single-parameter downward-closed setting with single-dimensional signals and SOS valuations; (ii) four approximation for any combinatorial auction with multidimensional signals and separable-SOS valuations; and (iii) (k + 3) and (2 log(k) + 4) approximation for any combinatorial auction with single-dimensional signals, with k-sized signal space, for SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized version of SOS, d-approximate SOS, while losing a factor that depends on d. Funding: A. Eden was partially supported by NSF Award IIS-2007887, the European Research Council (ERC) under the European Union's Seventh Framework Programme [FP7/2007-2013]/ERC Grant Agreement 337122, by the Israel Science Foundation [Grant 317/17], and by an Amazon research award. M. Feldman received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program [Grant Agreement 866132], by the Israel Science Foundation [Grant 317/17], by an Amazon research award, and by the NSF-BSF [Grant 2020788]. The work of K. Goldner was supported partially by NSF awards DMS-1903037 and CNS-2228610 and a Shibulal Family Career Development Professorship. A. R. Karlin was supported by the NSF-CCF [Grant 1813135]. 
    more » « less
  4. We consider a revenue-maximizing seller with m heterogeneous items and a single buyer whose valuation for the items may exhibit both substitutes and complements. We show that the better of selling the items separately and bundling them together— guarantees a [Formula: see text]-fraction of the optimal revenue, where d is a measure of the degree of complementarity; it extends prior work showing that the same simple mechanism achieves a constant-factor approximation when buyer valuations are subadditive (the most general class of complement-free valuations). Our proof is enabled by a recent duality framework, which we use to obtain a bound on the optimal revenue in the generalized setting. Our technical contributions are domain specific to handle the intricacies of settings with complements. One key modeling contribution is a tractable notion of “degree of complementarity” that admits meaningful results and insights—we demonstrate that previous definitions fall short in this regard. 
    more » « less