skip to main content

Search for: All records

Creators/Authors contains: "Edmands, Suzanne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2023
  2. Free, publicly-accessible full text available April 1, 2023
  3. Impaired mitochondrial function can lead to senescence and the ageing phenotype. Theory predicts degenerative ageing phenotypes and mitochondrial pathologies may occur more frequently in males due to the matrilineal inheritance pattern of mitochondrial DNA observed in most eukaryotes. Here, we estimated the sex-specific longevity for parental and reciprocal F1 hybrid crosses for inbred lines derived from two allopatric Tigriopus californicus populations with over 20% mitochondrial DNA divergence. T. californicus lacks sex chromosomes allowing for more direct testing of mitochondrial function in sex-specific ageing. To better understand the ageing mechanism, we estimated two age-related phenotypes (mtDNA content and 8-hydroxy-20-deoxyguanosine (8-OH-dG) DNA damage) at two time points in the lifespan. Sex differences in lifespan depended on the mitochondrial and nuclear backgrounds, including differences between reciprocal F1 crosses which have different mitochondrial haplotypes on a 50 : 50 nuclear background, with nuclear contributions coming from alternative parents. Young females showed the highest mtDNA content which decreased with age, while DNA damage in males increased with age and exceed that of females 56 days after hatching. The adult sex ratio was male-biased and was attributed to complex mitonuclear interactions. Results thus demonstrate that sex differences in ageing depend on mitonuclear interactions in the absencemore »of sex chromosomes.« less
  4. Shaffer, Bradley (Ed.)
    Abstract Rising global temperatures threaten to disrupt population sex ratios, which can in turn cause mate shortages, reduce population growth and adaptive potential, and increase extinction risk, particularly when ratios are male biased. Sex ratio distortion can then have cascading effects across other species and even ecosystems. Our understanding of the problem is limited by how often studies measure temperature effects in both sexes. To address this, the current review surveyed 194 published studies of heat tolerance, finding that the majority did not even mention the sex of the individuals used, with <10% reporting results for males and females separately. Although the data are incomplete, this review assessed phylogenetic patterns of thermally induced sex ratio bias for 3 different mechanisms: sex-biased heat tolerance, temperature-dependent sex determination (TSD), and temperature-induced sex reversal. For sex-biased heat tolerance, documented examples span a large taxonomic range including arthropods, chordates, protists, and plants. Here, superior heat tolerance is more common in females than males, but the direction of tolerance appears to be phylogenetically fluid, perhaps due to the large number of contributing factors. For TSD, well-documented examples are limited to reptiles, where high temperature usually favors females, and fishes, where high temperature consistently favors males.more »For temperature-induced sex reversal, unambiguous cases are again limited to vertebrates, and high temperature usually favors males in fishes and amphibians, with mixed effects in reptiles. There is urgent need for further work on the full taxonomic extent of temperature-induced sex ratio distortion, including joint effects of the multiple contributing mechanisms.« less
  5. Abstract Background Patterns of gene expression can be dramatically different between males and females of the same species, in part due to genes on sex chromosomes. Here we test for sex differences in early transcriptomic response to oxidative stress in a species which lacks heteromorphic sex chromosomes, the copepod Tigriopus californicus . Results Male and female individuals were separately exposed to control conditions and pro-oxidant conditions (hydrogen peroxide and paraquat) for periods of 3 hours and 6 hours. Variance partitioning showed the greatest expression variance among individuals, highlighting the important information that can be obscured by the common practice of pooling individuals. Gene expression variance between sexes was greater than that among treatments, showing the profound effect of sex even when males and females share the same genome. Males exhibited a larger response to both pro-oxidants, differentially expressing more than four times as many genes, including up-regulation of more antioxidant genes, heat shock proteins and protease genes. While females differentially expressed fewer genes, the magnitudes of fold change were generally greater, indicating a more targeted response. Although females shared a smaller fraction of differentially expressed genes between stressors and time points, expression patterns of antioxidant and protease genes were moremore »similar between stressors and more GO terms were shared between time points. Conclusions Early transcriptomic responses to the pro-oxidants H 2 O 2 and paraquat in copepods revealed substantial variation among individuals and between sexes. The finding of such profound sex differences in oxidative stress response, even in the absence of sex chromosomes, highlights the importance of studying both sexes and the potential for developing sex-specific strategies to promote optimal health and aging in humans.« less