Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The impact of extratropical transition (ET) on tropical cyclone (TC) tornadoes is not fully understood with no prior tornado climatologies for ET cases. Hence, this study investigates how ET impacts tornadoes and convective-scale environments within TCs using multidecadal tornado and radiosonde data from North Atlantic TCs. This research divides ET into three phases: tropical (i.e., pre-ET), transition (i.e., during ET), and extratropical (i.e., post-ET). These results show that the largest portion of tornadoes occurs before and during ET, with the greatest frequencies during ET. As TCs progress through ET, tornado location shifts north and east in the United States but farther south or more strongly downshear right relative to the TC center. Tornadoes also tend to occur later in the day and are more likely to be associated with greater damage. Evaluation of radiosondes shows that the downshear-right quadrant of the TC is frequently the most favorable for tornado production, with sufficient entrainment CAPE (ECAPE) and strong storm-relative helicity (SRH). Specifically, the downshear-right quadrant shows slower decreases in ECAPE (associated with synoptic-scale cooling and drying) and increased SRH and associated lower-tropospheric vertical wind shear through ET, relative to the other quadrants relative to the deep-tropospheric (i.e., 850–200-hPa) vertical wind shear vector. These results inform the physical model and prediction of ET-related TC structure, both in terms of their convective-scale environments and subsequent hazard production.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract Landfalling tropical cyclones (TCs) often decay rapidly due to a decrease in moisture and energy fluxes over land when compared to the ocean surface. Occasionally, however, these cyclones maintain intensity or reintensify over land. Post-landfall maintenance and intensification of TCs over land may be a result of fluxes of moisture and energy derived from anomalously wet soils. These soils act similarly to a warm sea surface, in a phenomenon coined the “Brown Ocean Effect.” Tropical Storm (TS) Bill (2015) made landfall over a region previously moistened by anomalously heavy rainfall and displayed periods of reintensification and maintenance over land. This study evaluates the role of the Brown Ocean Effect on the observed maintenance and intensification of TS Bill using a combination of existing and novel approaches, including the evaluation of precursor conditions at varying temporal scales and making use of composite backward trajectories. Comparisons were made to landfalling TCs with similar paths that did not undergo TC maintenance and/or intensification (TCMI) as well as to TS Erin (2007), a known TCMI case. We show that the antecedent environment prior to TS Bill was similar to other known TCMI cases, but drastically different from the non-TCMI cases analyzed in this study. Furthermore, we show that contributions of evapotranspiration to the overall water vapor budget were non-negligible prior to TCMI cases and that evapotranspiration along storm inflow was significantly (p<0.05) greater for TCMI cases than non-TCMI cases suggesting a potential upstream contribution from the land surface.more » « less
-
null (Ed.)Abstract As lightning-detection records lengthen and the efficiency of severe weather reporting increases, more accurate climatologies of convective hazards can be constructed. In this study we aggregate flashes from the National Lightning Detection Network (NLDN) and Arrival Time Difference long-range lightning detection network (ATDnet) with severe weather reports from the European Severe Weather Database (ESWD) and Storm Prediction Center (SPC) Storm Data on a common grid of 0.25° and 1-h steps. Each year approximately 75–200 thunderstorm hours occur over the southwestern, central, and eastern United States, with a peak over Florida (200–250 h). The activity over the majority of Europe ranges from 15 to 100 h, with peaks over Italy and mountains (Pyrenees, Alps, Carpathians, Dinaric Alps; 100–150 h). The highest convective activity over continental Europe occurs during summer and over the Mediterranean during autumn. The United States peak for tornadoes and large hail reports is in spring, preceding the maximum of lightning and severe wind reports by 1–2 months. Convective hazards occur typically in the late afternoon, with the exception of the Midwest and Great Plains, where mesoscale convective systems shift the peak lightning threat to the night. The severe wind threat is delayed by 1–2 h compared to hail and tornadoes. The fraction of nocturnal lightning over land ranges from 15% to 30% with the lowest values observed over Florida and mountains (~10%). Wintertime lightning shares the highest fraction of severe weather. Compared to Europe, extreme events are considerably more frequent over the United States, with maximum activity over the Great Plains. However, the threat over Europe should not be underestimated, as severe weather outbreaks with damaging winds, very large hail, and significant tornadoes occasionally occur over densely populated areas.more » « less
-
Abstract This work investigates how the relationship between tropical cyclone (TC) tornadoes and ambient (i.e., synoptic-scale) deep-tropospheric (i.e., 850–200-hPa) vertical wind shear (VWS) varies between coastal and inland environments. Observed U.S. TC tornado track data are used to study tornado frequency and location, while dropsonde and radiosonde data are used to analyze convective-scale environments. To study the variability in the TC tornado–VWS relationship, these data are categorized by both 1) their distance from the coast and 2) reanalysis-derived VWS magnitude. The analysis shows that TCs produce coastal tornadoes regardless of VWS magnitude primarily in their downshear sector, with tornadoes most frequently occurring in strongly sheared cases. Inland tornadoes, including the most damaging cases, primarily occur in strongly sheared TCs within the outer radii of the downshear-right quadrant. Consistent with these patterns, dropsondes and coastal radiosondes show that the downshear-right quadrant of strongly sheared TCs has the most favorable combination of enhanced lower-tropospheric near-surface speed shear and veering, and reduced lower-tropospheric thermodynamic stability for tornadic supercells. Despite the weaker intensity farther inland, these kinematic conditions are even more favorable in inland environments within the downshear-right quadrant of strongly sheared TCs, due to the strengthened veering of the ambient winds and the lack of changes in the TC outer tangential wind field strength. The constructive superposition of the ambient and TC winds may be particularly important to inland tornado occurrence. Together, these results will allow forecasters to anticipate how the frequency and location of tornadoes and, more broadly, convection may change as TCs move inland.more » « less
-
Abstract There remains no consensus on whether the outer size of the tropical cyclone (TC) wind field impacts tornado occurrence. This study statistically examines the relationship between TC outer size with both the number and location of tornadoes using multidecadal tornado reports, a reanalysis‐derived TC outer size metric, and radiosonde data. These results show that larger TC spawn tornadoes that are located farther from and over a broader region relative to the cyclone center, although these changes do not entirely scale with TC outer size. Larger TCs are also associated with more frequent occurrence of tornadoes per 6 h, especially enhanced numbers of tornadoes. These changes in tornado occurrence in larger TCs may be due to a broadening of favorable helicity for tornadoes in the downshear sector, which may be partially offset by CAPE reductions in the left‐of‐shear quadrants.more » « less
An official website of the United States government
