We utilize ∼17,000 bright luminous red galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep (∼2.5 hr galaxy−1exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at 0.4 <
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract z < 1.3. We useProspector to infer nonparametric star formation histories and identify a significant population of recently quenched galaxies that have joined the quiescent population within the past ∼1 Gyr. The highest-redshift subset (277 atz > 1) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At 0.4 <z < 0.8, we measure the number density of quiescent LRGs, finding that recently quenched galaxies constitute a growing fraction of the massive galaxy population with increasing look-back time. Finally, we quantify the importance of this population among massive ( > 11.2) LRGs by measuring the fraction of stellar mass each galaxy formed in the gigayear before observation,f 1 Gyr. Although galaxies withf 1 Gyr> 0.1 are rare atz ∼ 0.4 (≲0.5% of the population), byz ∼ 0.8, they constitute ∼3% of massive galaxies. Relaxing this threshold, we find that galaxies withf 1 Gyr> 5% constitute ∼10% of the massive galaxy population atz ∼more » -
Abstract Over the next 5 yr, the Dark Energy Spectroscopic Instrument (DESI) will use 10 spectrographs with 5000 fibers on the 4 m Mayall Telescope at Kitt Peak National Observatory to conduct the first Stage IV dark energy galaxy survey. At
z < 0.6, the DESI Bright Galaxy Survey (BGS) will produce the most detailed map of the universe during the dark-energy-dominated epoch with redshifts of >10 million galaxies spanning 14,000 deg2. In this work, we present and validate the final BGS target selection and survey design. From the Legacy Surveys, BGS will target anr < 19.5 mag limited sample (BGS Bright), a fainter 19.5 <r < 20.175 color-selected sample (BGS Faint), and a smaller low-z quasar sample. BGS will observe these targets using exposure times scaled to achieve homogeneous completeness and cover the footprint three times. We use observations from the Survey Validation programs conducted prior to the main survey along with simulations to show that BGS can complete its strategy and make optimal use of “bright” time. BGS targets have stellar contamination <1%, and their densities do not depend strongly on imaging properties. BGS Bright will achieve >80% fiber assignment efficiency. Finally, BGS Bright and BGS Faint will achieve >95% redshift success overmore »