Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
This paper proposes a data-driven optimal tracking control scheme for unknown general nonlinear systems using neural networks. First, a new neural networks structure is established to reconstruct the unknown system dynamics of the form ˙ x(t) = f (x(t))+g(x(t))u(t). Two networks in parallel are designed to approximate the functions f (x) and g(x). Then the obtained data-driven models are used to build the optimal tracking control. The developed control consists of two parts, the feed-forward control and the optimal feedback control. The optimal feedback control is developed by approximating the solution of the Hamilton-Jacobi-Bellman equation with neural networks. Unlike other studies, the Hamilton-Jacobi-Bellman solution is found by estimating the value function derivative using neural networks. Finally, the proposed control scheme is tested on a delta robot. Two trajectory tracking examples are provided to verify the effectiveness of the proposed optimal control approach.more » « less
-
This paper presents an inverse kinematic controller using neural networks for trajectory controlling of a delta robot in real-time. The developed control scheme is purely data-driven and does not require prior knowledge of the delta robot kinematics. Moreover, it can adapt to the changes in the kinematics of the robot. For developing the controller, the kinematic model of the delta robot is estimated by using neural networks. Then, the trained neural networks are configured as a controller in the system. The parameters of the neural networks are updated while the robot follows a path to adaptively compensate for modeling uncertainties and external disturbances of the control system. One of the main contributions of this paper is to show that updating the parameters of neural networks offers a smaller tracking error in inverse kinematic control of a delta robot with consideration of joint backlash. Different simulations and experiments are conducted to verify the proposed controller. The results show that in the presence of external disturbance, the error in trajectory tracking is bounded, and the negative effect of joint backlash in trajectory tracking is reduced. The developed method provides a new approach to the inverse kinematic control of a delta robot.more » « less