Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Receiver functions can be used to estimate the Moho depth (H) and ratio of P to S wavespeed (α/β or κ) in the crust. This is commonly done by grid search, forward modeling travel times to produce so-called “H-κ” stacks of receiver function amplitude. However, radial anisotropy in the crust, which can be significant, is almost never considered in this process. Here, we show that radial anisotropy changes the H-κ stack, biasing interpretations of crustal structure by introducing errors up to ∼3% in H and ∼1% in κ for commonly observed anisotropy magnitudes. We propose a simple method to correct H-κ stacks by incorporating radial anisotropy in the forward calculation. Synthetic tests show that this approach almost completely removes error caused by radial anisotropy. We show examples of this procedure with stations in the eastern United States. We provide readers with code to construct radially anisotropic H-κ stacks.more » « less
-
Abstract The Pacific ocean-bottom seismometer (OBS) Research into Convecting Asthenosphere (ORCA) experiment deployed two 30-station seismic arrays between 2018 and 2020—a US contribution to the international PacificArray project. The “Young ORCA” array deployed on ∼40 Ma central Pacific seafloor had a ∼68% data recovery rate, whereas the “Old ORCA” array deployed on ∼120 Ma southwest Pacific seafloor had a ∼80% recovery rate. We detail here the seismic data quality, spectral characteristics, and engineering challenges of this experiment. We provide information to assist users of this dataset, including OBS orientations and tables of daily data quality for all channels. Preliminary analysis illustrates the utility of these data for surface- and body-wave seismic imaging.more » « less
-
Abstract Little has been seismically imaged through the lithosphere and mantle at rifted margins across the continent‐ocean transition. A 2014–2015 community seismic experiment deployed broadband seismic instruments across the shoreline of the eastern North American rifted margin. Previous shear‐wave splitting along the margin shows several perplexing patterns of anisotropy, and by proxy, mantle flow. Neither margin parallel offshore fast azimuths nor null splitting on the continental coast obviously accord with absolute plate motion, paleo‐spreading, or rift‐induced anisotropy. Splitting measurements, however, offer no depth constraints on anisotropy. Additionally, mantle structure has not yet been imaged in detail across the continent‐ocean transition. We used teleseismicS,SKS,SKKS, andPKSsplitting and differential travel times recorded on ocean‐bottom seismometers, regional seismic networks, and EarthScope Transportable Array stations to conduct joint isotropic/anisotropic tomography across the margin. The velocity model reveals a transition from fast, thick, continental keel to low velocity, thinned lithosphere eastward. Imaged short wavelength velocity anomalies can be largely explained by edge‐driven convection or shear‐driven upwelling. We also find that layered anisotropy is prevalent across the margin. The anisotropic fast polarization is parallel to the margin within the asthenosphere. This suggests margin parallel flow beneath the plate. The lower oceanic lithosphere preserves paleo‐spreading‐parallel anisotropy, while the continental lithosphere has complex anisotropy reflecting several Wilson cycles. These results demonstrate the complex and active nature of a margin which is traditionally considered tectonically inactive.more » « less
-
Abstract We use surface wave measurements to reveal anisotropy as a function of depth within the Juan de Fuca and Gorda plate system. Using a two‐plane wave method, we measure phase velocity and azimuthal anisotropy of fundamental mode Rayleigh waves, solving for anisotropic shear velocity. These surface wave measurements are jointly inverted with constraints fromSKSsplitting studies using a Markov chain approach. We show that the two data sets are consistent and present inversions that offer new constraints on the vertical distribution of strain beneath the plates and the processes at spreading centers. Anisotropy of the Juan de Fuca plate interior is strongest (~2.4%) in the low‐velocity zone between ~40‐ to 90‐km depth, with ENE direction driven by relative shear between plate motion and mantle return flow from the Cascadia subduction zone. In disagreement withPnmeasurements, weak (~1.1%) lithospheric anisotropy in Juan de Fuca is highly oblique to the expected ridge‐perpendicular direction, perhaps connoting complex intralithospheric fabrics associated with melt or off‐axis downwelling. In the Gorda microplate, strong shallow anisotropy (~1.9%) is consistent withPninversions and aligned with spreading and may be enhanced by edge‐driven internal strain. Weak anisotropy with ambiguous orientation in the low‐velocity zone can be explained by Gorda's youth and modest motion relative to the Pacific. Deeper (≥90 km) fabric appears controlled by regional flow fields modulated by the Farallon slab edge: anisotropy is strong (~1.8%) beneath Gorda, but absent beneath the Juan de Fuca, which is in the strain shadow of the slab.more » « less
-
SUMMARY A new amphibious seismic data set from the Cascadia subduction zone is used to characterize the lithosphere structure from the Juan de Fuca ridge to the Cascades backarc. These seismic data are allowing the imaging of an entire tectonic plate from its creation at the ridge through the onset of the subduction to beyond the volcanic arc, along the entire strike of the Cascadia subduction zone. We develop a tilt and compliance correction procedure for ocean-bottom seismometers that employs automated quality control to calculate robust station noise properties. To elucidate crust and upper-mantle structure, we present shoreline-crossing Rayleigh-wave phase-velocity maps for the Cascadia subduction zone, calculated from earthquake data from 20 to 160 s period and from ambient-noise correlations from 9 to 20 s period. We interpret the phase-velocity maps in terms of the tectonics associated with the Juan de Fuca plate history and the Cascadia subduction system. We find that thermal oceanic plate cooling models cannot explain velocity anomalies observed beneath the Juan de Fuca plate. Instead, they may be explained by a ≤1 per cent partial melt region beneath the ridge and are spatially collocated with patches of hydration and increased faulting in the crust and upper mantle near the deformation front. In the forearc, slow velocities appear to be more prevalent in areas that experienced high slip in past Cascadia megathrust earthquakes and generally occur updip of the highest-density tremor regions and locations of intraplate earthquakes. Beneath the volcanic arc, the slowest phase velocities correlate with regions of highest magma production volume.more » « less
An official website of the United States government
