skip to main content


Title: Depth‐Dependent Azimuthal Anisotropy Beneath the Juan de Fuca Plate System
Abstract

We use surface wave measurements to reveal anisotropy as a function of depth within the Juan de Fuca and Gorda plate system. Using a two‐plane wave method, we measure phase velocity and azimuthal anisotropy of fundamental mode Rayleigh waves, solving for anisotropic shear velocity. These surface wave measurements are jointly inverted with constraints fromSKSsplitting studies using a Markov chain approach. We show that the two data sets are consistent and present inversions that offer new constraints on the vertical distribution of strain beneath the plates and the processes at spreading centers. Anisotropy of the Juan de Fuca plate interior is strongest (~2.4%) in the low‐velocity zone between ~40‐ to 90‐km depth, with ENE direction driven by relative shear between plate motion and mantle return flow from the Cascadia subduction zone. In disagreement withPnmeasurements, weak (~1.1%) lithospheric anisotropy in Juan de Fuca is highly oblique to the expected ridge‐perpendicular direction, perhaps connoting complex intralithospheric fabrics associated with melt or off‐axis downwelling. In the Gorda microplate, strong shallow anisotropy (~1.9%) is consistent withPninversions and aligned with spreading and may be enhanced by edge‐driven internal strain. Weak anisotropy with ambiguous orientation in the low‐velocity zone can be explained by Gorda's youth and modest motion relative to the Pacific. Deeper (≥90 km) fabric appears controlled by regional flow fields modulated by the Farallon slab edge: anisotropy is strong (~1.8%) beneath Gorda, but absent beneath the Juan de Fuca, which is in the strain shadow of the slab.

 
more » « less
Award ID(s):
1658214
NSF-PAR ID:
10363953
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
8
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Observations of seismic anisotropy can provide direct constraints on the character of mantle flow in subduction zones, critical for our broader understanding of subduction dynamics. Here we present over 750 new SKS splitting measurements in the vicinity of Mount St. Helens in the Cascadia subduction zone using a combination of stations from the iMUSH broadband array and Cascades Volcano Observatory network. This provides the highest density of splitting measurements yet available in Cascadia, acting as a focused “telescope” for seismic anisotropy in the subduction zone. We retrieve spatially consistent splitting parameters (mean fast directionΦ: 74°, mean delay time∂t: 1.0 s) with the azimuthal occurrence of nulls in agreement with the fast direction of splitting. When averaged across the array, a 90° periodicity in splitting parameters as a function of back azimuth is revealed, which has not been recovered previously with single‐station observations. The periodicity is characterized by a sawtooth pattern inΦwith a clearly defined 45° trend. We present new equations that reproduce this behavior based upon known systematic errors when calculating shear wave splitting from data with realistic seismic noise. The corrected results suggest a single layer of anisotropy with an ENE‐WSW fast axis parallel to the motion of the subducting Juan de Fuca plate; in agreement with predictions for entrained subslab mantle flow. The splitting pattern is consistent with that seen throughout Cascadia, suggesting that entrainment of the underlying asthenosphere with the subducting slab is coherent and widespread.

     
    more » « less
  2. Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared. 
    more » « less
  3. Abstract

    Several hypotheses have been proposed to explain intriguing circular shear wave splitting patterns in the Pacific Northwest, invoking either 2‐D entrained flows or 3‐D return flows. Here, we present some hitherto unidentified, depth‐dependent anisotropic signatures to reconcile different conceptual models. At depths shallower than 200 km, the fast propagation directions of seismic waves to the west of the Rocky Mountain are aligned sub‐parallel to the subduction direction of the Juan de Fuca and Gorda Plates. This pattern is consistent with previous onshore/offshore shear wave splitting measurements and indicates that 2‐D entrained flows dominate at shallower depths. From 300 to 500 km, two large‐scale return flows are revealed, one circulating around Nevada and Colorado and the other running around the edge of the descending Juan de Fuca slab. These observations suggest the development of toroidal‐mode mantle flows, driven by the fast rollback of the narrow, fragmented Juan de Fuca and Gorda slabs.

     
    more » « less
  4. Palin, Richard (Ed.)

    A 3D crustal model for the central Cascadia continental shelf and Coast Range between 44°N and 45°N shows that the crystalline crust of the forearc wedge beneath the coastline is characterized by a NW-trending, vertical slab of high-velocity rock interpreted to represent the dike complex that fed the Yachats Basalt, which was intruded into the forearc approximately 37 million years ago. A spatial correlation is observed between downward deflection of the crust of the subducting Juan de Fuca plate, inferred from inversion of PmP arrivals to image the Moho surface, and the high velocity (and consequently high density) anomaly underlying the Yachats Basalt. Apparent subsequent rebound of the subducting plate at greater depth suggests a primarily elastic response of the subducting plate to this load. Calculations for a range of plausible values for the magnitude of the load and the width and depth of the depression indicate that the effective elastic thickness of the subducted Juan de Fuca plate is < 6 km. Although our simple analytical models do not include partial support of the load of the slab by the adjacent upper plate crust or time dependence to account for the motion of the slab beneath the load, incorporation of those effects should decrease rather than increase the apparent strength of the subducted plate. We conclude that the subducted Juan de Fuca plate beneath the central Oregon margin is elastically thin and has the potential to store elastic strain energy before rupturing. Our model of a well-defined, focused and static upper plate load that locally deforms the subducted plate within the nominally seismogenic or transitional part of the Cascadia plate boundary may be unique in providing a relatively straightforward scenario for estimating the mechanical properties of the subducted Juan de Fuca plate. We extrapolate from these results to speculate that elastic deformation of the subducting plate may contribute to the low level of seismicity throughout much of the Cascadia forearc in the inter-seismic period between great earthquakes but note that our local results do not preclude faulting or elasto-plastic deformation of a thin and weak plate as it subducts. These results also suggest that the subducting plate should deform in response to larger scale variations in upper plate thickness and density.

     
    more » « less
  5. Abstract

    We invertPg,PmP, andPntraveltimes from an active‐source, multiscale tomography experiment to constrain the three‐dimensional isotropic and anisotropicPwave velocity structure of the topmost oceanic mantle and crust and crustal thickness variations beneath the entire Endeavour segment of the Juan de Fuca Ridge. The isotropic velocity structure is characterized by a semicontinuous, narrow (5‐km‐wide) crustal low‐velocity volume that tracks the sinuous ridge axis. Across the Moho, the low‐velocity volume abruptly broadens to approximately 20 km in width and displays a north‐south linear trend that connects the two overlapping spreading centers bounding the segment. From the seismic results, we estimate the thermal structure and melt distribution beneath the Endeavour segment. The thermal structure indicates that the observed skew, or lateral offset, between the crustal and mantle magmatic systems is a consequence of differences in mechanisms of heat transfer at crustal and mantle depths, with the crust and mantle dominated by advection and conduction, respectively. Melt volume estimates exhibit significant along‐axis variations that coincide with the observed skew between the mantle and crustal magmatic systems, with sites of enhanced crustal melt volumes and vigorous hydrothermal activity corresponding to regions where the mantle and crustal magmatic systems are vertically aligned. These results contradict models of ridge segmentation that predict enhanced and reduced melt supply beneath the segment center and ends, respectively. Our results instead support a model in which segment‐scale skew between the crustal and mantle magmatic systems governs magmatic and hydrothermal processes at mid‐ocean ridges.

     
    more » « less