skip to main content

Search for: All records

Creators/Authors contains: "Eis, Annie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. DLC1 locks talin R8 in a mechanically stable state, potentially preventing the inside-out activation of integrins.
    Free, publicly-accessible full text available July 15, 2023
  2. Free, publicly-accessible full text available December 1, 2022
  3. Binding-induced mechanical stabilization plays key roles in proteins involved in muscle contraction, cellular mechanotransduction, or bacterial adhesion. Because of the vector nature of force, single-molecule force spectroscopy techniques are ideal for measuring the mechanical unfolding of proteins. However, current approaches are still prone to calibration errors between experiments and geometrical variations between individual tethers. Here, we introduce a single-molecule assay based on magnetic tweezers and heterocovalent attachment, which can measure the binding of the substrate–ligand using the same protein molecule. We demonstrate this approach with protein L, a model bacterial protein which has two binding interfaces for the same regionmore »of kappa-light chain antibody ligands. Engineered molecules with eight identical domains of protein L between a HaloTag and a SpyTag were exposed to repeated unfolding–refolding cycles at forces up to 100 pN for several hours at a time. The unfolding behavior of the same protein was measured in solution buffers with different concentrations of antibody ligands. With increasing antibody concentration, an increasing number of protein L domains became more stable, indicative of ligand binding and mechanical reinforcement. Interestingly, the dissociation constant of the mechanically reinforced states coincides with that measured for the low-avidity binding interface of protein L, suggesting a physiological role for the second binding interface. The molecular approach presented here opens the road to a new type of binding experiments, where the same molecule can be exposed to different solvents or ligands.« less