skip to main content

Title: Binding-Induced Stabilization Measured on the Same Molecular Protein Substrate Using Single-Molecule Magnetic Tweezers and Heterocovalent Attachments
Binding-induced mechanical stabilization plays key roles in proteins involved in muscle contraction, cellular mechanotransduction, or bacterial adhesion. Because of the vector nature of force, single-molecule force spectroscopy techniques are ideal for measuring the mechanical unfolding of proteins. However, current approaches are still prone to calibration errors between experiments and geometrical variations between individual tethers. Here, we introduce a single-molecule assay based on magnetic tweezers and heterocovalent attachment, which can measure the binding of the substrate–ligand using the same protein molecule. We demonstrate this approach with protein L, a model bacterial protein which has two binding interfaces for the same region of kappa-light chain antibody ligands. Engineered molecules with eight identical domains of protein L between a HaloTag and a SpyTag were exposed to repeated unfolding–refolding cycles at forces up to 100 pN for several hours at a time. The unfolding behavior of the same protein was measured in solution buffers with different concentrations of antibody ligands. With increasing antibody concentration, an increasing number of protein L domains became more stable, indicative of ligand binding and mechanical reinforcement. Interestingly, the dissociation constant of the mechanically reinforced states coincides with that measured for the low-avidity binding interface of protein L, suggesting a more » physiological role for the second binding interface. The molecular approach presented here opens the road to a new type of binding experiments, where the same molecule can be exposed to different solvents or ligands. « less
; ; ;
Award ID(s):
1846143 1919670
Publication Date:
Journal Name:
The Journal of Physical Chemistry B
Sponsoring Org:
National Science Foundation
More Like this
  1. Single amino acid mutations provide quantitative insight into the energetics that underlie the dynamics and folding of membrane proteins. Chemical denaturation is the most widely used assay and yields the change in unfolding free energy (ΔΔG). It has been applied to >80 different residues of bacteriorhodopsin (bR), a model membrane protein. However, such experiments have several key limitations: 1) a nonnative lipid environment, 2) a denatured state with significant secondary structure, 3) error introduced by extrapolation to zero denaturant, and 4) the requirement of globally reversible refolding. We overcame these limitations by reversibly unfolding local regions of an individual protein with mechanical force using an atomic-force-microscope assay optimized for 2 μs time resolution and 1 pN force stability. In this assay, bR was unfolded from its native bilayer into a well-defined, stretched state. To measure ΔΔG, we introduced two alanine point mutations into an 8-amino-acid region at the C-terminal end of bR’s G helix. For each, we reversibly unfolded and refolded this region hundreds of times while the rest of the protein remained folded. Our single-molecule–derived ΔΔGfor mutant L223A (−2.3 ± 0.6 kcal/mol) quantitatively agreed with past chemical denaturation results while our ΔΔGfor mutant V217A was 2.2-fold larger (−2.4 ±more »0.6 kcal/mol). We attribute the latter result, in part, to contact between Val217and a natively bound squalene lipid, highlighting the contribution of membrane protein–lipid contacts not present in chemical denaturation assays. More generally, we established a platform for determining ΔΔGfor a fully folded membrane protein embedded in its native bilayer.

    « less
  2. NanoLuc is a bioluminescent protein recently engineered for applications in molecular imaging and cellular reporter assays. Compared to other bioluminescent proteins used for these applications, like Firefly Luciferase and Renilla Luciferase, it is ~150 times brighter, more thermally stable, and smaller. Yet, no information is known with regards to its mechanical properties, which could introduce a new set of applications for this unique protein, such as a novel biomaterial or as a substrate for protein activity/refolding assays. Here, we generated a synthetic NanoLuc derivative protein that consists of three connected NanoLuc proteins flanked by two human titin I91 domains on each side and present our mechanical studies at the single molecule level by performing Single Molecule Force Spectroscopy (SMFS) measurements. Our results show each NanoLuc repeat in the derivative behaves as a single domain protein, with a single unfolding event occurring on average when approximately 72 pN is applied to the protein. Additionally, we performed cyclic measurements, where the forces applied to a single protein were cyclically raised then lowered to allow the protein the opportunity to refold: we observed the protein was able to refold to its correct structure after mechanical denaturation only 16.9% of the time, while anothermore »26.9% of the time there was evidence of protein misfolding to a potentially non-functional conformation. These results show that NanoLuc is a mechanically moderately weak protein that is unable to robustly refold itself correctly when stretch-denatured, which makes it an attractive model for future protein folding and misfolding studies.« less
  3. Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play distinct roles in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structures, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a complementary RNA hairpin. In contrast, during viral assembly, NC, as a domain of the group-specific antigen (Gag) polyprotein, binds the genomic RNA and facilitates packaging into new virions. It is not clear how the same protein, alone or as part of Gag, performs such different RNA binding functions in the viral life cycle. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium stability and unfolding barrier for TAR RNA. Comparing measured results with a model of discrete protein binding allows us to localize affected binding sites, in addition to quantifying hairpin stability. We find that, while both NCp7 and Gag∆p6 destabilize the TAR hairpin, Gag∆p6 binding is localized to two sites in the stem, while NCp7 targets sites near the top loop. Unlike Gag∆p6, NCp7 destabilizes this loop, shifting the location of the reaction barrier toward the folded state and increasing the natural rate of hairpin opening by ~104.more »Thus, our results explain why Gag cleavage and NC release is an essential prerequisite for reverse transcription within the virion.« less
  4. Mechanical unfolding of biomolecular structures has been exclusively performed at the single-molecule level by single-molecule force spectroscopy (SMFS) techniques. Here we transformed sophisticated mechanical investigations on individual molecules into a simple platform suitable for molecular ensembles. By using shear flow inside a homogenizer tip, DNA secondary structures such as i-motifs are unfolded by shear force up to 50 pN at a 77 796 s −1 shear rate. We found that the larger the molecules, the higher the exerted shear forces. This shear force approach revealed affinity between ligands and i-motif structures. It also demonstrated a mechano-click reaction in which a Cu( i ) catalyzed azide–alkyne cycloaddition was modulated by shear force. We anticipate that this ensemble force spectroscopy method can investigate intra- and inter-molecular interactions with the throughput, accuracy, and robustness unparalleled to those of SMFS methods.
  5. We combine proximity labeling and single molecule binding assays to discover transmembrane protein interactions in cells. We first screen for candidate binding partners by tagging the extracellular and cytoplasmic regions of a “bait” protein with BioID biotin ligase and identify proximal proteins that are biotin tagged on both their extracellular and intracellular regions. We then test direct binding interactions between proximal proteins and the bait, using single molecule atomic force microscope binding assays. Using this approach, we identify binding partners for the extracellular region of E-cadherin, an essential cell–cell adhesion protein. We show that the desmosomal proteins desmoglein-2 and desmocollin-3, the focal adhesion protein integrin-α2β1, the receptor tyrosine kinase ligand ephrin-B1, and the classical cadherin P-cadherin, all directly interact with E-cadherin ectodomains. Our data shows that combining extracellular and cytoplasmic proximal tagging with a biophysical binding assay increases the precision with which transmembrane ectodomain interactors can be identified.