skip to main content


Search for: All records

Creators/Authors contains: "El Abbadi, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data privacy has garnered significant attention recently due to diverse applications that store sensitive data in untrusted infrastructure. From a data management point of view, the focus has been on the privacy of stored data and the privacy of querying data at a large scale. However, databases are not solely query engines on static data, they must support updates on dynamically evolving datasets. In this paper, we lay out a vision for privacy-preserving dynamic data. In particular, we focus on dynamic data that might be stored remotely on untrusted providers. Updates arrive at a provider and are verified and incorporated into the database based on predefined constraints. Depending on the application, the content of the stored data, the content of the updates and the constraints may be private or public. We then propose PReVer, a universal framework for managing regulated dynamic data in a privacy-preserving manner. We explore a set of research challenges that PReVer needs to address in order to guarantee the privacy of data, updates, and/or constraints and address the consistent and verifiable execution of updates. This opens the space of privacy-preserving data management from the narrow perspective of private queries on static datasets to the larger space of private management of dynamic data. 
    more » « less
  2. Velegrakis, Y. ; Zeinalipour-Yazti, D. ; Chrysanthis, P.K. ; Guerra, F. (Ed.)
    Distributed caches are widely deployed to serve social networks and web applications at billion-user scales. This paper presents Cache-on-Track (CoT), a decentralized, elastic, and predictive caching framework for cloud environments. CoT proposes a new cache replacement policy specifically tailored for small front-end caches that serve skewed workloads with small update percentage. Small front-end caches are mainly used to mitigate the load-imbalance across servers in the distributed caching layer. Front-end servers use a heavy hitter tracking algorithm to continuously track the top-k hot keys. CoT dynamically caches the top-C hot keys out of the tracked keys. CoT’s main advantage over other replacement policies is its ability to dynamically adapt its tracker and cache sizes in response to workload distribution changes. Our experiments show that CoT’s replacement policy consistently outperforms the hit-rates of LRU, LFU, and ARC for the same cache size on different skewed workloads. Also, CoT slightly outperforms the hit-rate of LRU-2 when both policies are configured with the same tracking (history) size. CoT achieves server size load-balance with 50% to 93.75% less front-end cache in comparison to other replacement policies. Finally, experiments show that CoT’s resizing algorithm successfully auto-configures the tracker and cache sizes to achieve back-end load-balance in the presence of workload distribution changes. 
    more » « less
  3. Wang, H. (Ed.)
    Once upon a time databases were structured, one size fitted all and they resided on machines that were trustworthy and even when they failed, they simply crashed. This era has come and gone as eloquently stated by Stonebraker and Cetintemel [16]. We now have key-value stores, graph databases, text databases, and a myriad of unstructured data repositories. The database community has wholeheartedly accepted the fact that the same information might come in different formats, modes and representations. We also accept that data might not be ”clean” and that data might need to be ”cleaned” due to the diverse sources of information. However, we, as a database community still cling to our 20th century belief that databases always reside on trustworthy, honest servers. Although the database community has always considered fault-tolerance as an integral building block of data management (remember ”D” in ACID is for Durability), we still have trouble accepting the fact that not all failures are simply crash failures and might in fact involve malicious and non-trustworthy infrastructure. This notion has been challenged and abandoned by many other Computer Science communities, most notably the security and the distributed systems communities. The rise of the cloud computing paradigm as well as the rapid popularity of blockchains demand a rethinking of our na¨ıve, comfortable beliefs in an ideal benign infrastructure. In the cloud, clients store their sensitive data in remote servers owned and operated by cloud providers. The Security and Crypto Communities have made significant inroads to protect both data and access privacy from malicious untrusted storage providers using encryption and oblivious data stores. The Distributed Systems and the Systems Communities have developed consensus protocols to ensure the fault-tolerant maintenance of data residing on untrusted, malicious infrastructure. However, these solutions face significant scalability and performance challenges when incorporated in large scale data repositories. Novel database designs need to directly address the natural tension between performance, fault-tolerance and trustworthiness. This is a perfect setting for the database community to lead and guide. 
    more » « less
  4. Darmont, J ; Novikov, B. ; Wrembel, R. (Ed.)
    Bitcoin [12] is a successful and interesting example of a global scale peer-to-peer cryptocurrency that integrates many techniques and protocols from cryptography, distributed systems, and databases. The main underlying data structure is blockchain, a scalable fully replicated structure that is shared among all participants and guarantees a consistent view of all user transactions by all participants in the system. In a blockchain, nodes agree on their shared states across a large network of untrusted participants. Although originally devised for cryptocurrencies, recent systems exploit its many unique features such as transparency, provenance, fault tolerance, and authenticity to support a wide range of distributed applications. Bitcoin and other cryptocurrencies use permissionless blockchains. In a permissionless blockchain, the network is public, and anyone can participate without a specific identity. Many other distributed applications, such as supply chain management and healthcare, are deployed on permissioned blockchains consisting of a set of known, identified nodes that still might not fully trust each other. This paper illustrates some of the main challenges and opportunities from a database perspective in the many novel and interesting application domains of blockchains. These opportunities are illustrated using various examples from recent research in both permissionless and permissioned blockchains. Two main themes unite the various examples: (1) the important role of distribution and consensus in managing large scale systems and (2) the need to tolerate malicious failures. The advent of cloud computing and large data centers shifted large scale data management infrastructures from centralized databases to distributed systems. One of the main challenges in designing distributed systems is the need for fault-tolerance. Cloud-based systems typically assume trusted infrastructures, since data centers are owned by the enterprises managing the data, and hence the design typically only assumes and tolerates crash failures. The advent of blockchain and the underlying premise that copies of the blockchain are distributed among untrusted entities has shifted the focus of fault-tolerance from tolerating crash failures to tolerating malicious failures. These interesting and challenging settings pose great opportunities for database researchers. 
    more » « less