skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "El-Badry, Kareem"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Astrometry from the Gaia mission was recently used to discover the two nearest known stellar-mass black holes (BHs), Gaia BH1 and Gaia BH2. These objects are among the first stellar-mass BHs not discovered via X-rays or gravitational waves. Both systems contain ∼1Mstars in wide orbits (a≈ 1.4 au, 4.96 au) around ∼9MBHs, with both stars (solar-type main sequence star, red giant) well within their Roche lobes in Gaia BH1 and BH2, respectively. However, the BHs are still expected to accrete stellar winds, leading to potentially detectable X-ray or radio emission. Here, we report observations of both systems with the Chandra X-ray Observatory, the Very Large Array (for Gaia BH1) and MeerKAT (for Gaia BH2). We did not detect either system, leading to X-ray upper limits ofLX< 9.4 × 1028andLX< 4.0 × 1029erg s−1and radio upper limits ofLr< 1.6 × 1025andLr< 1.0 × 1026erg s−1for Gaia BH1 and BH2, respectively. For Gaia BH2, the non-detection implies that the accretion rate near the horizon is much lower than the Bondi rate, consistent with recent models for hot accretion flows. We discuss implications of these non-detections for broader BH searches, concluding that it is unlikely that isolated BHs will be detected via interstellar medium accretion in the near future. We also calculate evolutionary models for the binaries’ future evolution using Modules for Experiments in Stellar Astrophysics, and find that Gaia BH1 will be visible as a symbiotic BH X-ray binary for 5–50 Myr. Since no symbiotic BH X-ray binaries are known, this implies either that fewer than ∼104Gaia BH1-like binaries exist in the Milky Way, or that they are common but have evaded detection.

    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. We report discovery and characterization of a main-sequence G star orbiting a dark object with mass1.90±0.04M. The system was discovered via Gaia astrometry and has an orbital period of 731 days. We obtained multi-epoch RV follow-up over a period of 639 days, allowing us to refine the Gaia orbital solution and precisely constrain the masses of both components. The luminous star is a12,Gyr-old, low-metallicity halo star near the main-sequence turnoff (,K; ; ;M0.79M) with a highly enhanced lithium abundance. The RV mass function sets a minimum companion mass for an edge-on orbit ofM2>1.67M, well above the Chandrasekhar limit. The Gaia inclination constraint,i=68.7±1.4,deg, then implies a companion mass ofM2=1.90±0.04M. The companion is most likely a massive neutron star: the only viable alternative is two massive white dwarfs in a close binary, but this scenario is disfavored on evolutionary grounds. The system’s low eccentricity (e=0.122±0.002) disfavors dynamical formation channels and implies that the neutron star likely formed with little mass loss (1M) and with a weak natal kick (). Stronger kicks with more mass loss are not fully ruled out but would imply that a larger population of similar systems with higher eccentricities should exist. The current orbit is too small to have accommodated the neutron star progenitor as a red supergiant or super-AGB star. The simplest formation scenario – isolated binary evolution – requires the system to have survived unstable mass transfer and common envelope evolution with a donor-to-accretor mass ratio>10. The system, which we call Gaia NS1, is likely a progenitor of symbiotic X-ray binaries and long-period millisecond pulsars. Its discovery challenges binary evolution models and bodes well for Gaia’s census of compact objects in wide binaries.

    more » « less
    Free, publicly-accessible full text available January 1, 2025

    Post-common envelope binaries (PCEBs) containing a white dwarf (WD) and a main-sequence (MS) star can constrain the physics of common envelope evolution and calibrate binary evolution models. Most PCEBs studied to date have short orbital periods (Porb ≲ 1 d), implying relatively inefficient harnessing of binaries’ orbital energy for envelope expulsion. Here, we present follow-up observations of five binaries from 3rd data release of Gaia mission containing solar-type MS stars and probable ultramassive WDs ($M\gtrsim 1.2\ {\rm M}_{\odot}$) with significantly wider orbits than previously known PCEBs, Porb = 18–49 d. The WD masses are much higher than expected for systems formed via stable mass transfer at these periods, and their near-circular orbits suggest partial tidal circularization when the WD progenitors were giants. These properties strongly suggest that the binaries are PCEBs. Forming PCEBs at such wide separations requires highly efficient envelope ejection, and we find that the observed periods can only be explained if a significant fraction of the energy released when the envelope recombines goes into ejecting it. Our one-dimensional stellar models including recombination energy confirm prior predictions that a wide range of PCEB orbital periods, extending up to months or years, can potentially result from Roche lobe overflow of a luminous asymptotic giant branch (AGB) star. This evolutionary scenario may also explain the formation of several wide WD + MS binaries discovered via self-lensing, as well as a significant fraction of post-AGB binaries and barium stars.

    more » « less
  4. Abstract

    We present high-precision radial velocity observations of Gaia BH1, the nearest known black hole (BH). The system contains a solar-type G star orbiting a massive dark companion, which could be either a single BH or an inner BH + BH binary. A BH + BH binary is expected in some models where Gaia BH1 formed as a hierarchical triple, which is attractive because they avoid many of the difficulties associated with forming the system through isolated binary evolution. Our observations test the inner binary scenario. We have measured 115 precise RVs of the G star, including 40 from ESPRESSO with a precision of 3–5 m s−1, and 75 from other instruments with a typical precision of 30–100 m s−1. Our observations span 2.33 orbits of the G star and are concentrated near a periastron passage, when perturbations due to an inner binary would be largest. The RVs are well-fit by a Keplerian two-body orbit and show no convincing evidence of an inner binary. UsingREBOUNDsimulations of hierarchical triples with a range of inner periods, mass ratios, eccentricities, and orientations, we show that plausible inner binaries with periodsPinner≳ 1.5 days would have produced larger deviations from a Keplerian orbit than observed. Binaries withPinner≲ 1.5 days are consistent with the data, but these would merge within a Hubble time and would thus imply fine-tuning. We present updated parameters of Gaia BH1's orbit. The RVs yield a spectroscopic mass functionfMBH=3.9358±0.0002M—about 7000σabove the ∼2.5Mmaximum neutron star mass. Including the inclination constraint from Gaia astrometry, this implies a BH mass ofMBH= 9.27 ± 0.10M.

    more » « less

    We present multi-epoch spectroscopic follow-up of a sample of ellipsoidal variables selected from Gaia Data Release 3 (DR3) as candidates for hosting quiescent black holes (BHs) and neutron stars (NSs). Our targets were identified as BH/NS candidates because their optical light curves – when interpreted with models that attribute variability to tidal distortion of a star by a companion that contributes negligible light – suggest that the companions are compact objects. From the likely BH/NS candidates identified in recent work accompanying Gaia DR3, we select 14 of the most promising targets for follow-up. We obtained spectra for each object at 2–10 epochs, strategically observing near conjunction to best constrain the radial velocity semi-amplitude. From the measured semi-amplitudes of the radial velocity curves, we derive minimum companion masses of $M_{2,\, \rm min} \le 0.5 \, {\rm M}_{\odot }$ in all cases. Assuming random inclinations, the typical inferred companion mass is $M_2 \sim 0.15\, {\rm M}_{\odot }$. This makes it unlikely that any of these systems contain a BH or NS, and we consider alternative explanations for the observed variability. We can best reproduce the observed light curves and radial velocities with models for unequal-mass contact binaries with star-spots. Some of the objects in our sample may also be detached main-sequence binaries, or even single stars with pulsations or star-spot variability masquerading as ellipsoidal variation. We provide recommendations for future spectroscopic efforts to further characterize this sample and more generally to search for compact object companions in close binaries.

    more » « less

    We present follow-up spectroscopy of 21 cataclysmic variables (CVs) with evolved secondaries and ongoing or recently terminated mass transfer. Evolutionary models predict that the secondaries should have anomalous surface abundances owing to nuclear burning in their cores during their main-sequence evolution and subsequent envelope stripping by their companion white dwarfs. To test these models, we measure sodium (Na) abundances of the donors from the Fraunhofer ‘D’ doublet. Accounting for interstellar absorption, we find that all objects in our sample have enhanced Na abundances. We measure 0.3 dex ≲ [Na/H] ≲ 1.5 dex across the sample, with a median [Na/H]  = 0.956 dex, i.e. about an order of magnitude enhancement over solar values. To interpret these values, we run Modules for Experiments in Stellar Astrophysics binary evolution models of CVs in which mass transfer begins just as the donor leaves the main sequence. These generically predict Na enhancement in donors with initial donor masses $\gtrsim 1\, {\rm M}_{\odot }$, consistent with our observations. In the models, Na enrichment occurs in the donors’ cores via the NeNa cycle near the end of their main-sequence evolution. Na-enhanced material is exposed when the binaries reach orbital periods of a few hours. Donors with higher initial masses are predicted to have higher Na abundances at fixed orbital period owing to their higher core temperatures during main-sequence evolution. The observed [Na/H] values are on average ≈0.3 dex higher than predicted by the models. Surface abundances of evolved CV donors provide a unique opportunity to study nuclear burning products in the cores of intermediate-mass stars.

    more » « less

    Cataclysmic variables (CVs) that have evolved past the period minimum during their lifetimes are predicted to be systems with a brown dwarf donor. While population synthesis models predict that around 40–70 per cent of the Galactic CVs are post-period minimum systems referred to as ‘period bouncers’, only a few dozen confirmed systems are known. We report the study and characterization of a new eclipsing CV, SRGeJ041130.3+685350 (SRGeJ0411), discovered from a joint SRG/eROSITA and ZTF programme. The optical spectrum of SRGeJ0411 shows prominent hydrogen and helium emission lines, typical for CVs. We obtained optical high-speed photometry to confirm the eclipse of SRGeJ0411 and determine the orbital period to be Porb ≈ 97.530 min. The spectral energy distribution suggests that the donor has an effective temperature of ≲ 1800 K. We constrain the donor mass with the period–density relationship for Roche lobe-filling stars and find that Mdonor ≲ 0.04 M⊙. The binary parameters are consistent with evolutionary models for post-period minimum CVs, suggesting that SRGeJ0411 is a new period bouncer. The optical emission lines of SRGeJ0411 are single-peaked despite the system being eclipsing, which is typically only seen due to stream-fed accretion in polars. X-ray spectroscopy hints that the white dwarf in SRGeJ0411 could be magnetic, but verifying the magnetic nature of SRGeJ0411 requires further investigation. The lack of optical outbursts has made SRGeJ0411 elusive in previous surveys, and joint X-ray and optical surveys highlight the potential for discovering similar systems in the near future.

    more » « less

    We present a homogeneously selected sample of 15 779 candidate binary systems with main sequence primary stars and orbital periods shorter than 5 d. The targets were selected from TESS full-frame image light curves on the basis of their tidally induced ellipsoidal modulation. Spectroscopic follow-up suggests a sample purity of 83 ± 13 per cent. Injection-recovery tests allow us to estimate our overall completeness as 28 ± 3 per cent with Porb < 3 d and to quantify our selection effects. 39 ± 4 per cent of our sample are contact binary systems, and we disentangle the period distributions of the contact and detached binaries. We derive the orbital period distribution of the main-sequence binary population at short orbital periods, finding a distribution continuous with the lognormal distribution previously found for solar-type stars at longer periods, but with a significant steepening at Porb ≲ 3 d, and a pile-up of contact binaries at Porb  ≈ 0.4 d. Companions in the period range of 1–5 d are an order of magnitude more frequent around stars hotter than $\approx 6250\, \rm K$ (the Kraft break) when compared to cooler stars, suggesting that magnetic braking shortens the lifetime of cooler binary systems. However, the period distribution in the range 1–10 d is independent of temperature. We detect resolved tertiary companions to 9.0 ± 0.2 per cent of our binaries with a median separation of 3200 au. The frequency of tertiary companions rises to 29 ± 5 per cent among the systems with the shortest ellipsoidal periods. This large binary sample with quantified selection effects will be a powerful resource for future studies of detached and contact binary systems with Porb<5 d.

    more » « less

    White dwarfs that accrete from non-degenerate companions show anomalous carbon and nitrogen abundances in the photospheres of their stellar components have been postulated to be descendants of supersoft X-ray binaries. Measuring the carbon-to-nitrogen abundance ratio may provide constraints on their past evolution. We fit far-ultraviolet spectroscopy of the cataclysmic variable HS 0218 + 3229 taken with the Cosmic Origins Spectrograph using Markov chain Monte Carlo methods, and found the carbon-to-nitrogen ratio is about one tenth of the Solar value $(\rm{\log \mathrm{[C/N]}}=-0.56\pm 0.15)$. We also provide estimates of the silicon and aluminium abundances, and upper limits for iron and oxygen. Using the parameters we derived for HS 0218 + 3229 we reconstruct its past. We calculated a grid of mesa models and implemented Gaussian process fits in order to determine its most likely initial binary configuration. We found that an initial mass of the donor of $M_{\rm donor;i}=0.90-0.98,\rm{\mathrm{M}_{\odot }}$ and an initial orbital period of Porb; i = 2.88 d (Porb; i = 3.12–3.16 d) for an assumed initial white dwarf mass of $\rm{M_{\mathrm{WD}}}_\mathrm{;i}=0.83\, \rm{\mathrm{M}_{\odot }}$$(\rm{M_{\mathrm{WD}}}_{\rm ;i}=0.60\, \rm{\mathrm{M}_{\odot }})$ can replicate the measured parameters. The low mass ratio, $M_{\rm donor;i} / \rm{M_{\mathrm{WD}}}_{\rm ;i} =1.08-1.18\, (1.5-1.63)$, suggests that the system did not go through a phase of hydrogen-burning on the white dwarf’s surface. However, we can not exclude a phase of thermal time-scale mass transfer in the past. We predict that HS 0218 + 3229 will evolve below the ≃ 76.2 ± 1 min period minimum for normal cataclysmic variables.

    more » « less

    We constrain the orbital period (Porb) distribution of low-mass detached main-sequence eclipsing binaries (EBs) with light-curves from the Zwicky Transient Facility (ZTF), which provides a well-understood selection function and sensitivity to faint stars. At short periods (Porb ≲ 2 d), binaries are predicted to evolve significantly due to magnetic braking (MB), which shrinks orbits and ultimately brings detached binaries into contact. The period distribution is thus a sensitive probe of MB. We find that the intrinsic period distribution of low-mass (0.1 ≲ M1/M⊙ < 0.9) binaries is basically flat (${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^0$) from Porb = 10 d down to the contact limit. This is strongly inconsistent with predictions of classical MB models based on the Skumanich relation, which are widely used in binary evolution calculations and predict ${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^{7/3}$ at short periods. The observed distributions are best reproduced by models in which the magnetic field saturates at short periods with a MB torque that scales roughly as $\dot{J}\propto P_{\rm orb}^{-1}$, as opposed to $\dot{J} \propto P_{\rm orb}^{-3}$ in the standard Skumanich law. We also find no significant difference between the period distributions of binaries containing fully and partially convective stars. Our results confirm that a saturated MB law, which was previously found to describe the spin-down of rapidly rotating isolated M dwarfs, also operates in tidally locked binaries. We advocate using saturated MB models in binary evolution calculations. Our work supports previous suggestions that MB in cataclysmic variables (CVs) is much weaker than assumed in the standard evolutionary model, unless mass transfer leads to significant additional angular momentum loss in CVs.

    more » « less