skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ellicott S., Qi Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the proliferation of connected internet of things (IoT) devices, trusted communications between such devices is an increasing concern. While researchers have spent significant resources to address this challenge, most solutions impose significant energy, delay, and complexity overhead on energy-constrained IoT devices. In this paper, we first provide an overview of some of the techniques used to incorporate security and trust features into IoT devices. Then, we propose and demonstrate an innovative encryption approach for wireless IoT communications which is low-energy, low-complexity, and lowlatency. The proposed cryptography integrates the encryption into the RF front-end of a wireless transceiver and is energyefficient, making it suitable for real-time and energy-limited IoT connectivity applications. 
    more » « less