Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In many tissues, cell type varies over single-cell length-scales, creating detailed heterogeneities fundamental to physiological function. To gain understanding of the relationship between tissue function and detailed structure, and eventually to engineer structurally and physiologically accurate tissues, we need the ability to assemble 3D cellular structures having the level of detail found in living tissue. Here we introduce a method of 3D cell assembly having a level of precision finer than the single-cell scale. With this method we create detailed cellular patterns, demonstrating that cell type can be varied over the single-cell scale and showing function after their assembly.more » « less
-
ABSTRACT We investigate the abundance and distribution of metals in the high-redshift intergalactic medium and circum-galactic medium through the analysis of a sample of almost 600 Si iv absorption lines detected in high- and intermediate-resolution spectra of 147 quasars. The evolution of the number density of Si iv lines, the column density distribution function, and the cosmic mass density are studied in the redshift interval 1.7 ≲ z ≲ 6.2 and for log N(Si iv) ≥ 12.5. All quantities show a rapid increase between z ∼ 6 and z ≲ 5 and then an almost constant behaviour to z ∼ 2 in very good agreement with what is already observed for C iv absorption lines. The present results are challenging for numerical simulations: When simulations reproduce our Si iv results, they tend to underpredict the properties of C iv, and when the properties of C iv are reproduced, the number of strong Si iv lines [log N(Si iv) > 14] is overpredicted.more » « less
-
Three-dimensional (3D) printing has expanded beyond the mere patterned deposition of melted solids, moving into areas requiring spatially structured soft matter—typically materials composed of polymers, colloids, surfactants, or living cells. The tunable and dynamically variable rheological properties of soft matter enable the high-resolution manufacture of soft structures. These rheological properties are leveraged in 3D printing techniques that employ sacrificial inks and sacrificial support materials, which go through reversible solid–fluid transitions under modest forces or other small perturbations. Thus, a sacrificial material can be used to shape a second material into a complex 3D structure, and then discarded. Here, we review the sacrificial materials and related methods used to print soft structures. We analyze data from the literature to establish manufacturing principles of soft matter printing, and we explore printing performance within the context of instabilities controlled by the rheology of soft matter materials.more » « less
An official website of the United States government
