Fabricating complex structures on micro‐ and mesoscales is a critical aspect in the design of advanced sensors and soft electronics. However, soft lithographic methods offer an important approach to fabricating such structures, the progress in the field of additive manufacturing (e.g., 3D printing) offers methods of fabrication with much more material complexity. The rheological complexity of the printing material, however, often dictates the limitations of printing. In particular, the challenges involved in synthesizing printing materials that can enable shape retention at smaller scales (<100 μm), yet be conductive, limits many applications of 3D printing to soft microelectronics. Herein, a printing‐centered approach using a novel particle‐free conductive emulsion ink is presented. This approach separates the printing and polymerization of a conductive monomer (pyrrole) and renders a novel ink that is used to print filaments with heretofore impossible to realize 3D feature dimensions and build structures with high shape retention. The printability of the ink is evaluated, and post‐treatment properties assessed. Multidirectional strain sensors are printed using the emulsion ink to illustrate an exemplary application in soft electronics.
more »
« less
Three-dimensional printing with sacrificial materials for soft matter manufacturing
Three-dimensional (3D) printing has expanded beyond the mere patterned deposition of melted solids, moving into areas requiring spatially structured soft matter—typically materials composed of polymers, colloids, surfactants, or living cells. The tunable and dynamically variable rheological properties of soft matter enable the high-resolution manufacture of soft structures. These rheological properties are leveraged in 3D printing techniques that employ sacrificial inks and sacrificial support materials, which go through reversible solid–fluid transitions under modest forces or other small perturbations. Thus, a sacrificial material can be used to shape a second material into a complex 3D structure, and then discarded. Here, we review the sacrificial materials and related methods used to print soft structures. We analyze data from the literature to establish manufacturing principles of soft matter printing, and we explore printing performance within the context of instabilities controlled by the rheology of soft matter materials.
more »
« less
- Award ID(s):
- 1352043
- PAR ID:
- 10085331
- Date Published:
- Journal Name:
- MRS Bulletin
- Volume:
- 42
- Issue:
- 08
- ISSN:
- 0883-7694
- Page Range / eLocation ID:
- 571 to 577
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Embedded ink writing (EIW) and direct ink writing (DIW) constitute the primary strategies for three-dimensional (3D) printing within the realm of material extrusion. These methods enable the rapid fabrication of complex 3D structures, utilizing either yield-stress support baths or self-supporting inks. Both these strategies have been extensively studied across a range of fields, including biomedical, soft robotics, and smart sensors, due to their outstanding print fidelity and compatibility with diverse ink materials. Particle additives capable of forming volume-filling 3D networks are frequently incorporated into polymer solvents. This integration is crucial for engineering the requisite microstructures essential for the formulation of successful support bath and ink materials. The interplay between the particle additives and polymer solvents is critical for achieving rheological tunability in various 3D printing strategies, yet this area has not been systematically reviewed. Therefore, in this critical review, we examined various mechanisms of particle–polymer interactions, the resulting microstructures, and their subsequent impact on mechanical and rheological properties. Overall, this work aims to serve as a foundational guideline for the design of next-generation materials in the field of extrusion additive manufacturing, specifically for EIW and DIW.more » « less
-
Abstract Granular, microgel‐based materials have garnered interest as promising tissue engineering scaffolds due to their inherent porosity, which can promote cell infiltration. Adapting these materials for 3D bioprinting, while maintaining sufficient void space to enable cell migration, can be challenging, since the rheological properties that determine printability are strongly influenced by microgel packing and void fraction. In this work, a strategy is proposed to decouple printability and void fraction by blending UV‐crosslinkable gelatin methacryloyl (GelMA) microgels with sacrificial gelatin microgels to form composite inks. It is observed that inks with an apparent viscosity greater than ≈100 Pa s (corresponding to microgel concentrations ≥5 wt%) have rheological properties that enable extrusion‐based printing of multilayered structures in air. By altering the ratio of GelMA to sacrificial gelatin microgels, while holding total concentration constant at 6 wt%, a family of GelMA:gelatin microgel inks is created that allows for tuning of void fraction from 0.20 to 0.57. Furthermore, human umbilical vein endothelial cells (HUVEC) seeded onto printed constructs are observed to migrate into granular inks in a void fraction‐dependent manner. Thus, the family of microgel inks holds promise for use in 3D printing and tissue engineering applications that rely upon cell infiltration.more » « less
-
Abstract Three-dimensional (3D) bioprinting is a promising technique for spatially patterning cells and materials into constructs that mimic native tissues and organs. However, a trade-off exists between printability and biological function, where weak materials are typically more suited for 3D cell culture but exhibit poor shape fidelity when printed in air. Recently, a new class of assistive materials has emerged to overcome this limitation and enable fabrication of more complex, biologically relevant geometries, even when using soft materials as bioinks. These materials include support baths, which bioinks are printed into, and sacrificial inks, which are printed themselves and then later removed. Support baths are commonly yield-stress materials that provide physical confinement during the printing process to improve resolution and shape fidelity. Sacrificial inks have primarily been used to create void spaces and pattern perfusable networks, but they can also be combined directly with the bioink to change its mechanical properties for improved printability or increased porosity. Here, we outline the advantages of using such assistive materials in 3D bioprinting, define their material property requirements, and offer case study examples of how these materials are used in practice. Finally, we discuss the remaining challenges and future opportunities in the development of assistive materials that will propel the bioprinting field forward toward creating full-scale, biomimetic tissues and organs.more » « less
-
ABSTRACT Soft materials with unique nanostructures such as lamellar, hexagonal, and cubic morphologies can replicate complex structures that have potential in various fields, including biomedical and industrial applications. However, a key challenge in advancing the broader applications of 3D printing for these nanostructured soft materials is insufficient mechanical properties that hinder their printability and compromise structural stability in the final product. In this study, the suitability of a fatty acid‐based lamellar gel is evaluated for direct extrusion‐based 3D printing. The lamellar gel with varying water content is integrated with a photocurable hydrogel to preserve the shape and stability of the final prints. Complex 2D and 3D design patterns are used to assess extrusion behavior, structural stability, and print precision under varying pressures. Small‐angle X‐ray Scattering (SAXS) measurements reveal the formation of lamellar nanostructures and confirm their retention after photocuring in various gels. Rheological analysis confirms that these gels exhibit key properties suitable for extrusion‐based 3D printing, such as shear‐thinning behavior. Additionally, tensile testing is conducted to evaluate the mechanical properties across cured print samples. This study underscores the potential of nanostructured gels as a robust and versatile platform, facilitating the development of materials engineered for various applications.more » « less
An official website of the United States government

