skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ely, J.J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species. Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date. To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-Seq data from four brain regions in an unprecedented eighteen species. Here we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our sample that represents an unprecedented 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size and found several with signals of positive selection in their regulatory regions. Our study extensively broadens the context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for study of genetic regulation of brain development and evolution. 
    more » « less