Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a phylogeny of Chrysopidae inferred from combining molecular and morphological data. Apochrysinae were recovered as sister to the rest of the family (Nothochrysinae and Chrysopinae). The monogeneric tribe Nothancylini is confirmed as sister to the remaining Chrysopinae. The other four tribes are grouped in two clades: Belonopterygini + Leucochrysini and Ankylopterygini + Chrysopini. The Nineta-group is herein transferred from Chrysopini to Ankylopterygini. Within the diverse and species-rich Chrysopini we recognize five genus-group clades: Chrysopa, Chrysoperla, Chrysopodes, Eremochrysa and Meleoma generic groups. The mapping of characters, such as the parameres, the tignum, the im cell or the tibial spurs, on the phylogeny provides insights into the evolution of these traits in the family. In addition, we propose the following taxonomic changes to the classification of the family: the inclusion of Chrysopidia, Nineta and Tumeochrysa in the tribe Ankylopterygini, and the synonymization of Furcochrysa with Chrysopa.
-
Quasicrystals have been discovered in a variety of materials ranging from metals to polymers. Yet, why and how they form is incompletely understood. In situ transmission electron microscopy of alloy quasicrystal formation in metals suggests an error-and-repair mechanism, whereby quasiperiodic crystals grow imperfectly with phason strain present, and only perfect themselves later into a high-quality quasicrystal with negligible phason strain. The growth mechanism has not been investigated for other types of quasicrystals, such as dendrimeric, polymeric, or colloidal quasicrystals. Soft-matter quasicrystals typically result from entropic, rather than energetic, interactions, and are not usually grown (either in laboratories or in silico ) into large-volume quasicrystals. Consequently, it is unknown whether soft-matter quasicrystals form with the high degree of structural quality found in metal alloy quasicrystals. Here, we investigate the entropically driven growth of colloidal dodecagonal quasicrystals (DQCs) via computer simulation of systems of hard tetrahedra, which are simple models for anisotropic colloidal particles that form a quasicrystal. Using a pattern recognition algorithm applied to particle trajectories during DQC growth, we analyze phason strain to follow the evolution of quasiperiodic order. As in alloys, we observe high structural quality; DQCs with low phason strain crystallize directly from the melt and only requiremore »
-
The rigid constraints of chemistry—dictated by quantum mechanics and the discrete nature of the atom—limit the set of observable atomic crystal structures. What structures are possible in the absence of these constraints? Here, we systematically crystallize one-component systems of particles interacting with isotropic multiwell pair potentials. We investigate two tunable families of pairwise interaction potentials. Our simulations self-assemble a multitude of crystal structures ranging from basic lattices to complex networks. Sixteen of the structures have natural analogs spanning all coordination numbers found in inorganic chemistry. Fifteen more are hitherto unknown and occupy the space between covalent and metallic coordination environments. The discovered crystal structures constitute targets for self-assembly and expand our understanding of what a crystal structure can look like.
-
The field of self-assembly has moved far beyond early work, where the focus was primarily the resultant beautiful two- and three-dimensional structures, to a focus on forming materials and devices with important properties either otherwise not available, or only available at great cost. Over the last few years, materials with unprecedented electronic, photonic, energy-storage, and chemical separation functionalities were created with self-assembly, while at the same time, the ability to form even more complex structures in two and three dimensions has only continued to advance. Self-assembly crosscuts all areas of materials. Functional structures have now been realized in polymer, ceramic, metallic, and semiconducting systems, as well as composites containing multiple classes of materials. As the field of self-assembly continues to advance, the number of highly functional systems will only continue to grow and make increasingly greater impacts in both the consumer and industrial space.
-
While bees are critical to sustaining a large proportion of global food production, as well as pollinating both wild and cultivated plants, they are decreasing in both numbers and diversity. Our understanding of the factors driving these declines is limited, in part, because we lack sufficient data on the distribution of bee species to predict changes in their geographic range under climate change scenarios. Additionally lacking is adequate data on the behavioral and anatomical traits that may make bees either vulnerable or resilient to human-induced environmental changes, such as habitat loss and climate change. Fortunately, a wealth of associated attributes can be extracted from the specimens deposited in natural history collections for over 100 years. Extending Anthophila Research Through Image and Trait Digitization (Big-Bee) is a newly funded US National Science Foundation Advancing Digitization of Biodiversity Collections project. Over the course of three years, we will create over one million high-resolution 2D and 3D images of bee specimens (Fig. 1), representing over 5,000 worldwide bee species, including most of the major pollinating species. We will also develop tools to measure bee traits from images and generate comprehensive bee trait and image datasets to measure changes through time. The Big-Bee networkmore »
-
Complex crystallization pathways are common in protein crystallization, tetrahedrally coordinated systems, and biomineralization, where single or multiple precursors temporarily appear before the formation of the crystal. The emergence of precursors is often explained by a unique property of the system, such as short-range attraction, directional bonding, or ion association. But, structural characteristics of the prenucleation phases found in multistep crystallization remain unclear, and models are needed for testing and expanding the understanding of fluid-to-solid ordering pathways. Here, we report 3 instances of 2-step crystallization of hard-particle fluids. Crystallization in these systems proceeds via a high-density precursor fluid phase with prenucleation motifs in the form of clusters, fibers and layers, and networks, respectively. The density and diffusivity change across the fluid–fluid phase transition increases with motif dimension. We observe crystal nucleation to be catalyzed by the interface between the 2 fluid phases. The crystals that form are complex, including, notably, a crystal with 432 particles in the cubic unit cell. Our results establish the existence of complex crystallization pathways in entropic systems and reveal prenucleation motifs of various dimensions.
-
Orientational ordering is a necessary step in the crystallization of molecules and anisotropic colloids. Plastic crystals, which are possible mesophases between the fluid and fully ordered crystal, are translationally ordered but exhibit no long range orientational order. Here, we study the two-dimensional phase behavior of hard regular polygons with edge number n = 3–12. This family of particles provides a model system to isolate the effect of shape and symmetry on the existence of plastic crystal phases. We show that the symmetry group of the particle, G , and the symmetry group of the local environment in the crystal, H , together determine plastic colloidal crystal phase behavior in two dimensions. If G contains completely the symmetry elements of H , then a plastic crystal phase is absent. If G and H share some but not all nontrivial symmetry elements, then a plastic crystal phase exists with preferred particle orientations that recover the absent symmetry elements of the crystal; we call this phase the discrete plastic crystal phase. If G and H share no nontrivial symmetry elements, then a plastic crystal phase exists without preferred orientations, which we call an indiscrete plastic crystal.