Multiferroic materials have generated great interest due to their potential as functional device materials. Nanocomposites have been increasingly used to design and generate new functionalities by pairing dissimilar ferroic materials, though the combination often introduces new complexity and challenges unforeseeable in single-phase counterparts. The recently developed approaches to fabricate 3D super-nanocomposites (3D‐sNC) open new avenues to control and enhance functional properties. In this work, we develop a new 3D‐sNC with CoFe2O4(CFO) short nanopillar arrays embedded in BaTiO3(BTO) film matrix via microstructure engineering by alternatively depositing BTO:CFO vertically-aligned nanocomposite layers and single-phase BTO layers. This microstructure engineering method allows encapsulating the relative conducting CFO phase by the insulating BTO phase, which suppress the leakage current and enhance the polarization. Our results demonstrate that microstructure engineering in 3D‐sNC offers a new bottom–up method of fabricating advanced nanostructures with a wide range of possible configurations for applications where the functional properties need to be systematically modified.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
30
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Aiping (3)
-
Enriquez, Erik (3)
-
Jia, Quanxi (3)
-
Li, Leigang (2)
-
Lu, Ping (2)
-
Wang, Haiyan (2)
-
Zhang, Bruce (2)
-
Bowlan, Pamela (1)
-
Dai, Yaomin (1)
-
Dowden, Paul (1)
-
Gao, Xiang (1)
-
Kalinin, Sergei V. (1)
-
Li, Nan (1)
-
Li, Qian (1)
-
Luo, Yongkang (1)
-
Lü, Xujie (1)
-
Prasankumar, Rohit P. (1)
-
Taylor, Antoinette J. (1)
-
Wang, Zhongchang (1)
-
Wei, Bin (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. E. Lischka, E.B. Dyer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. Higgins (0)
-
A. I. Sacristán, J. C. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Enriquez, Erik ; Li, Qian ; Bowlan, Pamela ; Lu, Ping ; Zhang, Bruce ; Li, Leigang ; Wang, Haiyan ; Taylor, Antoinette J. ; Yarotski, Dmitry ; Prasankumar, Rohit P. ; et al ( , Nanoscale)Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO 3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. Here, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO 3 :MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricity in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films.
-
Metallic interface induced by electronic reconstruction in crystalline-amorphous bilayer oxide filmsLü, Xujie ; Chen, Aiping ; Dai, Yaomin ; Wei, Bin ; Xu, Hongwu ; Wen, Jianguo ; Li, Nan ; Luo, Yongkang ; Gao, Xiang ; Enriquez, Erik ; et al ( , Science Bulletin)