skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eom, Sangjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Augmented reality (AR) platforms now support persistent, markerless experiences, in which virtual content appears in the same place relative to the real world, across multiple devices and sessions. However, optimizing environments for these experiences remains challenging; virtual content stability is determined by the performance of device pose tracking, which depends on recognizable environment features, but environment texture can impair human perception of virtual content. Low-contrast 'invisible textures' have recently been proposed as a solution, but may result in poor tracking performance when combined with dynamic device motion. Here, we examine the use of invisible textures in detail, starting with the first evaluation in a realistic AR scenario. We then consider scenarios with more dynamic device motion, and conduct extensive game engine-based experiments to develop a method for optimizing invisible textures. For texture optimization in real environments, we introduce MoMAR, the first system to analyze motion data from multiple AR users, which generates guidance using situated visualizations. We show that MoMAR can be deployed while maintaining an average frame rate > 59fps, for five different devices. We demonstrate the use of MoMAR in a realistic case study; our optimized environment texture allowed users to complete a task significantly faster (p=0.003) than a complex texture. 
    more » « less
  2. The traditional freehand placement of an external ventricular drain (EVD) relies on empirical craniometric landmarks to guide the craniostomy and subsequent passage of the EVD catheter. The diameter and trajectory of the craniostomy physically limit the possible trajectories that can be achieved during the passage of the catheter. In this study, the authors implemented a mixed reality–guided craniostomy procedure to evaluate the benefit of an optimally drilled craniostomy to the accurate placement of the catheter. Optical marker–based tracking using an OptiTrack system was used to register the brain ventricular hologram and drilling guidance for craniostomy using a HoloLens 2 mixed reality headset. A patient-specific 3D-printed skull phantom embedded with intracranial camera sensors was developed to automatically calculate the EVD accuracy for evaluation. User trials consisted of one blind and one mixed reality–assisted craniostomy followed by a routine, unguided EVD catheter placement for each of two different drill bit sizes. A total of 49 participants were included in the study (mean age 23.4 years, 59.2% female). The mean distance from the catheter target improved from 18.6 ± 12.5 mm to 12.7 ± 11.3 mm (p = 0.0008) using mixed reality guidance for trials with a large drill bit and from 19.3 ± 12.7 mm to 10.1 ± 8.4 mm with a small drill bit (p < 0.0001). Accuracy using mixed reality was improved using a smaller diameter drill bit compared with a larger bit (p = 0.039). Overall, the majority of the participants were positive about the helpfulness of mixed reality guidance and the overall mixed reality experience. Appropriate indications and use cases for the application of mixed reality guidance to neurosurgical procedures remain an area of active inquiry. While prior studies have demonstrated the benefit of mixed reality–guided catheter placement using predrilled craniostomies, the authors demonstrate that real-time quantitative and visual feedback of a mixed reality–guided craniostomy procedure can independently improve procedural accuracy and represents an important tool for trainee education and eventual clinical implementation. 
    more » « less
  3. Robust pervasive context-aware augmented reality (AR) has the potential to enable a range of applications that support users in reaching their personal and professional goals. In such applications, AR can be used to deliver richer, more immersive, and more timely just in time adaptive interventions (JITAI) than conventional mo-bile solutions, leading to more effective support of the user. This position paper defines a research agenda centered on improving AR applications' environmental, user, and social context awareness. Specifically, we argue for two key architectural approaches that will allow pushing AR context awareness to the next level: use of wearable and Internet of Things (IoT) devices as additional data streams that complement the data captured by the AR devices, and the development of edge computing-based mechanisms for enriching existing scene understanding and simultaneous localization and mapping (SLAM) algorithms. The paper outlines a collection of specific research directions in the development of such architectures and in the design of next-generation environmental, user, and social context awareness algorithms. 
    more » « less