skip to main content


Search for: All records

Creators/Authors contains: "Erk, Kendra A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Current methods to develop surfactant phase diagrams are time-intensive and fail to capture the kinetics of phase evolution. Here, the design and performance of a quantitative swelling technique to study the dynamic phase behavior of surfactants are described. The instrument combines cross-polarized optical and short-wave infrared imaging to enable high-resolution, high-throughput, and in situ identification of phases and water compositions. Data across the entire composition spectrum for the dynamics and phase evolution of a binary aqueous non-ionic surfactant solution at two isotherms are presented. This instrument provides pathways to develop non-equilibrium phase diagrams of surfactant systems—critical to predicting the outcomes of formulation and processing. It can be applied to study time-dependent material relationships across a diverse range of materials and processes, including the dissolution of surfactant droplets and the drying of aqueous polymer films.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  2. Material relationships at low temperatures were determined for concentrated surfactant solutions using a combination of rheological experiments, cross-polarized microscopy, calorimetry, and small angle X-ray scattering. A lamellar structured 70 wt% solution of sodium laureth sulfate in water was used as a model system. At cold temperatures (5 °C and 10 °C), the formation of surfactant crystals resulted in extremely high viscosity. The bulk flow behavior of multi-lamellar vesicles (20 °C) and focal conic defects (90 °C) in the lamellar phase was similar. Shear-induced crystallization at temperatures higher than the equilibrium crystallization temperature range resulted in an unusual complex viscosity peak. The effects of processing-relevant parameters including temperature, cooling time, and applied shear were investigated. Knowledge of key low-temperature structure–property-processing relationships for concentrated feedstocks is essential for the sustainable design and manufacturing of surfactant-based consumer products for applications such as cold-water laundry. 
    more » « less
    Free, publicly-accessible full text available March 20, 2025
  3. We demonstrate how addition of polyvinylpyrrolidone (PVP, a non-adsorbing polymer) affects the rheology of concentrated aqueous suspensions of colloidal alumina particles.

     
    more » « less
  4. ABSTRACT

    Rotational and oscillatory shear rheometry were used to quantify the flow behavior under minimal and significant solvent evaporation conditions for polymer solutions used to fabricate isoporous asymmetric membranes by the self‐assembly and non‐solvent induced phase separation (SNIPS) method. Three different A‐B‐C triblock terpolymer chemistries of similar molar mass were evaluated: polyisoprene‐b‐polystyrene‐b‐poly(4‐vinylpyridine) (ISV); polyisoprene‐b‐polystyrene‐b‐poly(N,N‐dimethylacrylamide) (ISD); and polyisoprene‐b‐polystyrene‐b‐poly(tert‐butyl methacrylate) (ISB). Solvent evaporation resulted in the formation of a viscoelastic film typical of asymmetric membranes. Solution viscosity and film viscoelasticity were strongly dependent on the chemical structure of the triblock terpolymer molecules. A hierarchical magnitude (ISV > ISB > ISD) was observed for both properties, with ISV solutions displaying the greatest solution viscosity, fastest film strength development, and greatest strength magnitude. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47038.

     
    more » « less