Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A foundational principle in the study of modules over standard graded polynomial rings is that geometric positivity conditions imply vanishing of Betti numbers. The main goal of this paper is to determine the extent to which this principle extends to the nonstandard ‐graded case. In this setting, the classical arguments break down, and the results become much more nuanced. We introduce a new notion of Castelnuovo–Mumford regularity and employ exterior algebra techniques to control the shapes of nonstandard ‐graded minimal free resolutions. Our main result reveals a unique feature in the nonstandard ‐graded case: the possible degrees of the syzygies of a graded module in this setting are controlled not only by its regularity, but also by its depth. As an application of our main result, we show that given a simplicial projective toric variety and a module over its coordinate ring, the multigraded Betti numbers of are contained in a particular polytope when satisfies an appropriate positivity condition.more » « less
-
We propose a notion of minimal free resolutions for differential modules, and we prove existence and uniqueness results for such resolutions. We also take the first steps toward studying the structure of minimal free resolutions of differential modules. Our main result in this direction explains a sense in which the minimal free resolution of a differential module is a deformation of the minimal free resolution of its homology; this leads to structural results that mirror classical theorems about minimal free resolutions of modules.more » « less