- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cauzzi, Gianna (2)
-
Chatzistergos, Theodosios (2)
-
Ermolli, Ilaria (2)
-
Reardon, Kevin (2)
-
Toriumi, Shin (2)
-
Adhikari, Laxman (1)
-
Airapetian, Vladimir (1)
-
Albers, Joshua (1)
-
Alberti, Tommaso (1)
-
Alfred, De Wijn (1)
-
Anastasiadis, Anastasios (1)
-
Andretta, Vincenzo (1)
-
Antolin, Patrick (1)
-
Athanasios, Kouloumvakos (1)
-
Auchère, Frédéric (1)
-
Aulanier, Guillaume (1)
-
Badman, Samuel (1)
-
Bahauddin, Shah (1)
-
Balasis, Georgios (1)
-
Bale, Stuart (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We review observations of solar activity, geomagnetic variation, and auroral visibility for the extreme geomagnetic storm on 1872 February 4. The extreme storm (referred to here as the Chapman–Silverman storm) apparently originated from a complex active region of moderate area (≈ 500μsh) that was favorably situated near disk center (S19° E05°). There is circumstantial evidence for an eruption from this region at 9–10 UT on 1872 February 3, based on the location, complexity, and evolution of the region, and on reports of prominence activations, which yields a plausible transit time of ≈29 hr to Earth. Magnetograms show that the storm began with a sudden commencement at ≈14:27 UT and allow a minimum Dst estimate of ≤ −834 nT. Overhead aurorae were credibly reported at Jacobabad (British India) and Shanghai (China), both at 19.°9 in magnetic latitude (MLAT) and 24.°2 in invariant latitude (ILAT). Auroral visibility was reported from 13 locations with MLAT below ∣20∣° for the 1872 storm (ranging from ∣10.°0∣–∣19.°9∣ MLAT) versus one each for the 1859 storm (∣17.°3∣ MLAT) and the 1921 storm (∣16.°2∣ MLAT). The auroral extension and conservative storm intensity indicate a magnetic storm of comparable strength to the extreme storms of 1859 September (25.°1 ± 0.°5 ILAT and −949 ± 31 nT) and 1921 May (27.°1 ILAT and −907 ± 132 nT), which places the 1872 storm among the three largest magnetic storms yet observed.more » « less
-
Raouafi, Nour E.; Hoeksema, J. Todd; Newmark, Jeffrey S.; Gibson, Sarah; Berger, Thomas E.; Upton, Lisa A.; Vourlidas, Angelos; Hassler, Donald M.; Kinnison, James; Ho, George C.; et al (, Bulletin of the AAS)This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere.more » « less
An official website of the United States government
