skip to main content

Search for: All records

Creators/Authors contains: "Eroglu, Abdullah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent technological advances have led to an increase in the adoption of Unmanned Aerial Vehicles (UAVs) in a variety of use-case scenarios. In particular, Departments of Transportation in several states in the United States have been exploring the use of UAVs for bridge and infrastructure inspections to improve safety and reduce the costs of the inspection process. UAVs are remotely piloted from a cockpit or a ground station via radio channels. The UAV's state information and payload information are also transmitted to the cockpit/ground station via radio frequency (RF) signals. The RF channels that are commonly used by most UAVs are 72-73, 902-928 and 2400-2483.5 MHz bands, which is also shared by several other communication protocols such as, WiFi and ZigBee networks, and therefore, the interference effects with the other services on the UAV's operation performance cannot be overlooked, particularly to maintain the minimum distance from the close by surfaces while flying alongside and underneath the bridges to achieve the best results. The loss of signal or even signal strength during such close flights can cause damage to the UAV. Especially while inspecting the bridges located in the urban areas that involve a lot of RF communication around due to presence of sever RC devices providing different services. Conventional Electromagnetic Compatibility (EMC) adherence requirements imposed on electronic systems are not adequate for UAVs due to their airborne nature and the presence of the other RF sources in the environment. Thus, in this work, we investigate the compliance of EMC requirements by designing and conducting field experiments to expose the UAVs to electromagnetic interference and distortions that are likely to be encountered during the UAV operation. The results of this work will enable us to assess the level of RF immunity of the general-purpose UAVs to aid in the selection of a suitable UAV platform for bridge inspection and develop safety procedures for minimizing the impact of RF interference. 
    more » « less