Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We study allocation of COVID-19 vaccines to individuals based on the structural properties of their underlying social contact network. Using a realistic representation of a social contact network for the Commonwealth of Virginia, we study how a limited number of vaccine doses can be strategically distributed to individuals to reduce the overall burden of the pandemic.We show that allocation of vaccines based on individualsβ degree (number of social contacts) and total social proximity time is significantly more effective than the usually used age-based allocation strategy in reducing the number of infections, hospitalizations and deaths. The overall strategy is robust even: (π) if the social contacts are not estimated correctly; (ππ) if the vaccine efficacy is lower than expected or only a single dose is given; (πππ) if there is a delay in vaccine production and deployment; and (ππ£) whether or not non-pharmaceutical interventions continue as vaccines are deployed. For reasons of implementability, we have used degree, which is a simple structural measure and can be easily estimated using several methods, including the digital technology available today. These results are significant, especially for resource-poor countries, where vaccines are less available, have lower efficacy, and are more slowly distributed.more » « less
-
Abstract This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-offs between economic losses, and lives saved and infections averted are non-linear in compliance to social distancing and the duration of the lockdown. Sectors that are worst hit are not the labor-intensive sectors such as the Agriculture sector and the Construction sector, but the ones with high valued jobs such as the Professional Services, even after the teleworkability of jobs is accounted for. Additionally, the findings show that a low compliance to interventions can be overcome by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net effect on economic loss depends on the interplay between the marginal gains from averting infections and deaths, versus the marginal loss from having healthy workers stay at home during the shutdown.more » « less
-
null (Ed.)Abstract We use an individual based model and national level epidemic simulations to estimate the medical costs of keeping the US economy open during COVID-19 pandemic under different counterfactual scenarios. We model an unmitigated scenario and 12 mitigation scenarios which differ in compliance behavior to social distancing strategies and in the duration of the stay-home order. Under each scenario we estimate the number of people who are likely to get infected and require medical attention, hospitalization, and ventilators. Given the per capita medical cost for each of these health states, we compute the total medical costs for each scenario and show the tradeoffs between deaths, costs, infections, compliance and the duration of stay-home order. We also consider the hospital bed capacity of each Hospital Referral Region (HRR) in the US to estimate the deficit in beds each HRR will likely encounter given the demand for hospital beds. We consider a case where HRRs share hospital beds among the neighboring HRRs during a surge in demand beyond the available beds and the impact it has in controlling additional deaths.more » « less
-
This paper describes an integrated, data-driven operational pipeline based on national agent-based models to support federal and state-level pandemic planning and response. The pipeline consists of ( i) an automatic semantic-aware scheduling method that coordinates jobs across two separate high performance computing systems; ( ii) a data pipeline to collect, integrate and organize national and county-level disaggregated data for initialization and post-simulation analysis; ( iii) a digital twin of national social contact networks made up of 288 Million individuals and 12.6 Billion time-varying interactions covering the US states and DC; ( iv) an extension of a parallel agent-based simulation model to study epidemic dynamics and associated interventions. This pipeline can run 400 replicates of national runs in less than 33 h, and reduces the need for human intervention, resulting in faster turnaround times and higher reliability and accuracy of the results. Scientifically, the work has led to significant advances in real-time epidemic sciences.more » « less
An official website of the United States government
