skip to main content


Title: Epidemiological and economic impact of COVID-19 in the US
Abstract This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-offs between economic losses, and lives saved and infections averted are non-linear in compliance to social distancing and the duration of the lockdown. Sectors that are worst hit are not the labor-intensive sectors such as the Agriculture sector and the Construction sector, but the ones with high valued jobs such as the Professional Services, even after the teleworkability of jobs is accounted for. Additionally, the findings show that a low compliance to interventions can be overcome by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net effect on economic loss depends on the interplay between the marginal gains from averting infections and deaths, versus the marginal loss from having healthy workers stay at home during the shutdown.  more » « less
Award ID(s):
1832635
NSF-PAR ID:
10311476
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research measures the epidemiological and economic impact of COVID-19 spread in the US under different mitigation scenarios, comprising of non-pharmaceutical interventions. A detailed disease model of COVID-19 is combined with a model of the US economy to estimate the direct impact of labor supply shock to each sector arising from morbidity, mortality, and lockdown, as well as the indirect impact caused by the interdependencies between sectors. During a lockdown, estimates of jobs that are workable from home in each sector are used to modify the shock to labor supply. Results show trade-o s between economic losses, and lives saved and infections averted are non-linear in compliance to social distancing and the duration of lockdown. Sectors that are worst hit are not the labor-intensive sectors such as Agriculture and Construction, but the ones with high valued jobs such as Professional Services, even after the teleworkability of jobs is accounted for. Additionally, the findings show that a low compliance to interventions can be overcome by a longer shutdown period and vice versa to arrive at similar epidemiological impact but their net effect on economic loss depends on the interplay between the marginal gains from averting infections and deaths, versus the marginal loss from having healthy workers stay at home during the shutdown. 
    more » « less
  2. Eberly, Jan ; Romer, David (Ed.)
    In the spring of 2020, the initial surge of COVID-19 infections and deaths was flattened using a combination of economic shutdowns and noneconomic non-pharmaceutical interventions (NPIs). The possibility of a second wave of infections and deaths raises the question of what interventions can be used to significantly reduce deaths while supporting, not preventing, economic recovery. We use a five-age epidemiological model combined with sixty-six-sector economic accounting to examine policies to avert and to respond to a second wave. We find that a second round of economic shutdowns alone are neither sufficient nor necessary to avert or quell a second wave. In contrast, noneconomic NPIs, such as wearing masks and personal distancing, increasing testing and quarantine, reintroducing restrictions on social and recreational gatherings, and enhancing protections for the elderly together can mitigate a second wave while leaving room for an economic recovery. 
    more » « less
  3. null (Ed.)
    Background: A key challenge in estimating epidemiological parameters for a pandemic such as the initial COVID-19 outbreak in Wuhan is the discrepancy between the officially reported number of infections and the true number of infections. A common approach to tackling the challenge is to use the number of infections exported from the originating city to infer the true number. This approach can only provide a static estimate of the epidemiological parameters before city lockdown because there are almost no exported cases thereafter.Methods: We propose a Bayesian estimation method that dynamically estimates the epidemiological parameters by recovering true numbers of infections from day-to-day official numbers. To illustrate the use of this method, we provide a comprehensive retrospection on how the COVID-19 had progressed in Wuhan from January 19 to March 5, 2020. Particularly, we estimate that the outbreak sizes by January 23 and March 5 were 11,239 [95% CI 4,794–22,372] and 124,506 [95% CI 69,526–265,113], respectively.Results: The effective reproduction number attained its maximum on January 24 (3.42 [95% CI 3.34–3.50]) and became less than 1 from February 7 (0.76 [95% CI 0.65–0.92]). We also estimate the effects of two major government interventions on the spread of COVID-19 in Wuhan.Conclusions: This case study by our proposed method affirms the believed importance and effectiveness of imposing tight non-essential travel restrictions and affirm the importance and effectiveness of government interventions (e.g., transportation suspension and large scale hospitalization) for effective mitigation of COVID-19 community spread. 
    more » « less
  4. Christofferson, Rebecca C. (Ed.)
    Background The COVID-19 pandemic has induced unprecedented reductions in human mobility and social contacts throughout the world. Because dengue virus (DENV) transmission is strongly driven by human mobility, behavioral changes associated with the pandemic have been hypothesized to impact dengue incidence. By discouraging human contact, COVID-19 control measures have also disrupted dengue vector control interventions, the most effective of which require entry into homes. We sought to investigate how and why dengue incidence could differ under a lockdown scenario with a proportion of the population sheltered at home. Methodology & principal findings We used an agent-based model with a realistic treatment of human mobility and vector control. We found that a lockdown in which 70% of the population sheltered at home and which occurred in a season when a new serotype invaded could lead to a small average increase in cumulative DENV infections of up to 10%, depending on the time of year lockdown occurred. Lockdown had a more pronounced effect on the spatial distribution of DENV infections, with higher incidence under lockdown in regions with higher mosquito abundance. Transmission was also more focused in homes following lockdown. The proportion of people infected in their own home rose from 54% under normal conditions to 66% under lockdown, and the household secondary attack rate rose from 0.109 to 0.128, a 17% increase. When we considered that lockdown measures could disrupt regular, city-wide vector control campaigns, the increase in incidence was more pronounced than with lockdown alone, especially if lockdown occurred at the optimal time for vector control. Conclusions & significance Our results indicate that an unintended outcome of lockdown measures may be to adversely alter the epidemiology of dengue. This observation has important implications for an improved understanding of dengue epidemiology and effective application of dengue vector control. When coordinating public health responses during a syndemic, it is important to monitor multiple infections and understand that an intervention against one disease may exacerbate another. 
    more » « less
  5. null (Ed.)
    As COVID-19 continues to pose significant public health threats, quantifying the effectiveness of different public health interventions is crucial to inform intervention strategies. Using detailed epidemiological and mobility data available for New York City and comprehensive modelling accounting for under-detection, we reconstruct the COVID-19 transmission dynamics therein during the 2020 spring pandemic wave and estimate the effectiveness of two major non-pharmaceutical interventions—lockdown-like measures that reduce contact rates and universal masking. Lockdown-like measures were associated with greater than 50% transmission reduction for all age groups. Universal masking was associated with an approximately 7% transmission reduction overall and up to 20% reduction for 65+ year olds during the first month of implementation. This result suggests that face covering can substantially reduce transmission when lockdown-like measures are lifted but by itself may be insufficient to control SARS-CoV-2 transmission. Overall, findings support the need to implement multiple interventions simultaneously to effectively mitigate COVID-19 spread before the majority of population can be protected through mass-vaccination. 
    more » « less