Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report on a full-polarization analysis of the first 25 as yet nonrepeating fast radio bursts (FRBs) detected at 1.4 GHz by the 110-antenna Deep Synoptic Array (DSA-110) during commissioning observations. We present details of the data-reduction, calibration, and analysis procedures developed for this novel instrument. Faraday rotation measures (RMs) are searched between ±106rad m−2and detected for 20 FRBs, with magnitudes ranging from 4 to 4670 rad m−2. Fifteen out of 25 FRBs are consistent with 100% polarization, 10 of which have high (≥70%) linear-polarization fractions and two of which have high (≥30%) circular-polarization fractions. Our results disfavor multipath RM scattering as a dominant depolarization mechanism. Polarization-state and possible RM variations are observed in the four FRBs with multiple subcomponents. We combine the DSA-110 sample with polarimetry of previously published FRBs, and compare the polarization properties of FRB subpopulations and FRBs with Galactic pulsars. Although FRB polarization fractions are typically higher than those of Galactic pulsars, and cover a wider range than those of pulsar single pulses, they resemble those of the youngest (characteristic ages <105yr) pulsars. Our results support a scenario wherein FRB emission is intrinsically highly linearly polarized, and propagation effects can result in conversion to circular polarization and depolarization. Young pulsar emission and magnetospheric propagation geometries may form a useful analogy for the origin of FRB polarization.more » « less
-
Abstract The stellar population environments that are associated with fast radio burst (FRB) sources provide important insights for developing their progenitor theories. We expand the diversity of known FRB host environments by reporting two FRBs in massive galaxy clusters that were discovered by the Deep Synoptic Array (DSA-110) during its commissioning observations. FRB 20220914A has been localized to a star-forming, late-type galaxy at a redshift of 0.1139 with multiple starbursts at lookback times less than ∼3.5 Gyr in the A2310 galaxy cluster. Although the host galaxy of FRB 20220914A is similar to typical FRB hosts, the FRB 20220509G host stands out as a quiescent, early-type galaxy at a redshift of 0.0894 in the A2311 galaxy cluster. The discovery of FRBs in both late- and early-type galaxies adds to the body of evidence that the FRB sources have multiple formation channels. Therefore, even though FRB hosts are typically star-forming, there must exist formation channels that are consistent with old stellar population in galaxies. The varied star formation histories of the two FRB hosts that we report here indicate a wide delay-time distribution of FRB progenitors. Future work in constraining the FRB delay-time distribution, using the methods that we develop herein, will prove crucial in determining the evolutionary histories of FRB sources.more » « less
-
Abstract The hot gas that constitutes the intracluster medium (ICM) has been studied at X-ray and millimeter/submillimeter wavelengths (Sunyaev–Zel’dovich effect) for decades. Fast radio bursts (FRBs) offer an additional method of directly measuring the ICM and gas surrounding clusters via observables such as dispersion measure (DM) and Faraday rotation measure. We report the discovery of two FRB sources detected with the Deep Synoptic Array whose host galaxies belong to massive galaxy clusters. In both cases, the FRBs exhibit excess extragalactic DM, some of which likely originate in the ICM of their respective clusters. FRB 20220914A resides in the galaxy cluster A2310 at z = 0.1125 with a projected offset from the cluster center of 520 ± 50 kpc. The host of a second source, FRB 20220509G, is an elliptical galaxy at z = 0.0894 that belongs to the galaxy cluster A2311 at the projected offset of 870 ± 50 kpc. These sources represent the first time an FRB has been localized to a galaxy cluster. We combine our FRB data with archival X-ray, Sunyaev–Zel'dovich (SZ), and optical observations of these clusters in order to infer properties of the ICM, including a measurement of gas temperature from DM and y SZ of 0.8–3.9 keV. We then compare our results to massive cluster halos from the IllustrisTNG simulation. Finally, we describe how large samples of localized FRBs from future surveys will constrain the ICM, particularly beyond the virial radius of clusters.more » « less
-
Abstract Faraday rotation measures (RMs) of fast radio bursts (FRBs) offer the prospect of directly measuring extragalactic magnetic fields. We present an analysis of the RMs of 10 as yet nonrepeating FRBs detected and localized to host galaxies with robust redshift measurements by the 63-antenna prototype of the Deep Synoptic Array (DSA-110). We combine this sample with published RMs of 15 localized FRBs, nine of which are repeating sources. For each FRB in the combined sample, we estimate the host-galaxy dispersion measure (DM) contributions and extragalactic RM. We find compelling evidence that the extragalactic components of FRB RMs are often dominated by contributions from the host-galaxy interstellar medium (ISM). Specifically, we find that both repeating and as yet nonrepeating FRBs show a correlation between the host DM and host RM in the rest frame, and we find an anticorrelation between extragalactic RM (in the observer frame) and redshift for nonrepeaters, as expected if the magnetized plasma is in the host galaxy. Important exceptions to the ISM origin include a dense, magnetized circumburst medium in some repeating FRBs, and the intracluster medium of host or intervening galaxy clusters. We find that the estimated ISM magnetic-field strengths, , are characteristically ∼1–2μG larger than those inferred from Galactic radio pulsars. This suggests either increased ISM magnetization in FRB hosts in comparison with the Milky Way, or that FRBs preferentially reside in regions of increased magnetic-field strength within their hosts.more » « less
-
Abstract We report the non-detection of dispersed bursts between 4 and 8 GHz from 2.5 hr of observations of FRB 20200120E at 6 GHz using the Robert C. Byrd Green Bank Telescope. Our fluence limits are several times lower than the average burst fluences reported at 600 and 1400 MHz. We conclude that these non-detections are either due to high-frequency bursts being weaker and/or scintillation-induced modulated. It is also likely that our observations were non-concurrent with any activity window of FRB 20200120E.more » « less
-
Abstract We present a multiband study of FRB 20180916B, a repeating source with a 16.3 day periodicity. We report the detection of four, one, and seven bursts from observations spanning 3 days using the upgraded Giant Metrewave Radio Telescope (300–500 MHz), the Canadian Hydrogen Intensity Mapping Experiment (400–800 MHz) and the Green Bank Telescope (600–1000 MHz), respectively. We report the first ever detection of the source in the 800–1000 MHz range along with one of the widest instantaneous bandwidth detections (200 MHz) at lower frequencies. We identify 30 μ s wide structures in one of the bursts at 800 MHz, making it the lowest frequency detection of such structures for this fast radio burst thus far. There is also a clear indication of high activity of the source at a higher frequency during earlier phases of the activity cycle. We identify a gradual decrease in the rotation measure over two years and no significant variations in the dispersion measure. We derive useful conclusions about progenitor scenarios, energy distribution, emission mechanisms, and variation of the downward drift rate of emission with frequency. Our results reinforce that multiband observations are an effective approach to study repeaters, and even one-off events, to better understand their varying activity and spectral anomalies.more » « less
-
Abstract We report the detection and interferometric localization of the repeating fast radio burst (FRB) source FRB 20220912A during commissioning observations with the Deep Synoptic Array (DSA-110). Two bursts were detected from FRB 20220912A, one each on 2022 October 18 and 2022 October 25. The best-fit position is (R.A. J2000, decl. J2000) = (23:09:04.9, +48:42:25.4), with a 90% confidence error ellipse with radii ±2″ and ±1″ in R.A. and decl., respectively. The two bursts are polarized, and we find a Faraday rotation measure that is consistent with the low value of +0.6 rad m−2reported by CHIME/FRB. The DSA-110 localization overlaps with the galaxy PSO J347.2702+48.7066 at a redshiftz= 0.0771, which we identify as the likely host. PSO J347.2702+48.7066 has a stellar mass of approximately 1010M⊙, modest internal dust extinction, and a star formation rate likely in excess of 0.1M⊙yr−1. The host-galaxy contribution to the dispersion measure is likely ≲50 pc cm−3. The FRB 20220912A source is therefore likely viewed along a tenuous plasma column through the host galaxy.more » « less
-
Abstract We present the discovery of 25 new repeating fast radio burst (FRB) sources found among CHIME/FRB events detected between 2019 September 30 and 2021 May 1. The sources were found using a new clustering algorithm that looks for multiple events colocated on the sky having similar dispersion measures (DMs). The new repeaters have DMs ranging from ∼220 to ∼1700 pc cm−3, and include sources having exhibited as few as two bursts to as many as twelve. We report a statistically significant difference in both the DM and extragalactic DM (eDM) distributions between repeating and apparently nonrepeating sources, with repeaters having a lower mean DM and eDM, and we discuss the implications. We find no clear bimodality between the repetition rates of repeaters and upper limits on repetition from apparently nonrepeating sources after correcting for sensitivity and exposure effects, although some active repeating sources stand out as anomalous. We measure the repeater fraction over time and find that it tends to an equilibrium of % over our total time-on-sky thus far. We also report on 14 more sources, which are promising repeating FRB candidates and which merit follow-up observations for confirmation.more » « less
An official website of the United States government
