Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Heat islands and warming temperatures are a growing global public health concern. Although cities are implementing cooling interventions, little is known about their efficacy. We conducted a literature review of field studies measuring the impact of urban cooling interventions, focusing on cooling centers, misting stations, cool pavements, and cool or green roofs. A total of 23 articles met the inclusion criteria. Studies of cooling centers measured the potential impact, based on evaluations of population proximity and heat-vulnerable populations. Reductions in temperature were reported for misting stations and cool pavements across a range of metrics. Misting station use was evaluated with temperature changes and user questionnaires. The benefits and disadvantages of each intervention are presented, and metrics for evaluating cooling interventions are compared. Gaps in the literature include a lack of measured impacts on personal thermal comfort, limited documentation on intervention costs, the need to standardize temperature metrics, and evaluation criteria.
-
Abstract The growing frequency, intensity, and duration of extreme heat events necessitates interventions to reduce heat exposures. Local opportunities for heat adaptation may be optimally identified through collection of both quantitative exposure metrics and qualitative data on perceptions of heat. In this study, we used mixed methods to characterize heat exposure among urban residents in the area of Boston, Massachusetts, US, in summer 2020. Repeated interviews of
N = 24 study participants ascertained heat vulnerability and adaptation strategies. Participants also used low-cost sensors to collect temperature, location, sleep, and physical activity data. We saw significant differences across temperature metrics: median personal temperature exposures were 3.9 °C higher than median ambient weather station temperatures. Existing air conditioning (AC) units did not adequately control indoor temperatures to desired thermostat levels: even with AC use, indoor maximum temperatures increased by 0.24 °C per °C of maximum outdoor temperature. Sleep duration was not associated with indoor or outdoor temperature. On warmer days, we observed a range of changes in time-at-home, expected given our small study size. Interview results further indicated opportunities for heat adaptation interventions including AC upgrades, hydration education campaigns, and amelioration of energy costs during high heat periods. Our mixed methods design informs heat adaptation interventions tailored to the challenges faced by residents in the study area. The strength of our community-academic partnership was a large part of the success of the mixed methods approach. -
Abstract Greenspace in schools might enhance students' academic performance. However, the literature—dominated by ecological studies at the school level in countries from the Northern Hemisphere—presents mixed evidence of a beneficial association. We evaluated the association between school greenness and student‐level academic performance in Santiago, Chile, a capital city of the Global South. This cross‐sectional study included 281,695 fourth‐grade students attending 1,498 public, charter, and private schools in Santiago city between 2014 and 2018. Student‐level academic performance was assessed using standardized test scores and indicators of attainment of learning standards in mathematics and reading. School greenness was estimated using Normalized Difference Vegetation Index (NDVI). Linear and generalized linear mixed‐effects models were fit to evaluate associations, adjusting for individual‐ and school‐level sociodemographic factors. Analyses were stratified by school type. In fully adjusted models, a 0.1 increase in school greenness was associated with higher test scores in mathematics (36.9 points, 95% CI: 2.49; 4.88) and in reading (1.84 points, 95% CI: 0.73; 2.95); as well as with higher odds of attaining learning standards in mathematics (OR: 1.20, 95% CI: 1.12; 1.28) and reading (OR: 1.07, 95% CI: 1.02; 1.13). Stratified analysis showed differences by school type, with associations of greater magnitude and strength for students attending public schools. No significant associations were detected for students in private schools. Higher school greenness was associated with improved individual‐level academic outcomes among elementary‐aged students in a capital city in South America. Our results highlight the potential of greenness in the school environment to moderate educational and environmental inequalities in urban areas.