skip to main content

Search for: All records

Creators/Authors contains: "Faehnrich, Karol"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract Detrital zircon U-Pb geochronology is one of the most common methods used to constrain the provenance of ancient sedimentary systems. Yet, its efficacy for precisely constraining paleogeographic reconstructions is often complicated by geological, analytical, and statistical uncertainties. To test the utility of this technique for reconstructing complex, margin-parallel terrane displacements, we compiled new and previously published U-Pb detrital zircon data (n = 7924; 70 samples) from Neoproterozoic–Cambrian marine sandstone-bearing units across the Porcupine shear zone of northern Yukon and Alaska, which separates the North Slope subterrane of Arctic Alaska from northwestern Laurentia (Yukon block). Contrasting tectonic models for the North Slope subterrane indicate it originated either near its current position as an autochthonous continuation of the Yukon block or from a position adjacent to the northeastern Laurentian margin prior to >1000 km of Paleozoic–Mesozoic translation. Our statistical results demonstrate that zircon U-Pb age distributions from the North Slope subterrane are consistently distinct from the Yukon block, thereby supporting a model of continent-scale strike-slip displacement along the Arctic margin of North America. Further examination of this dataset highlights important pitfalls associated with common methodological approaches using small sample sizes and reveals challenges in relying solely on detrital zircon age spectra for testing models of terranes displaced along the same continental margin from which they originated. Nevertheless, large-n detrital zircon datasets interpreted within a robust geologic framework can be effective for evaluating translation across complex tectonic boundaries. 
    more » « less
  3. Abstract

    The origin and displacement history of terranes emplaced along the northern margin of North America remain contentious. One of these terranes is the North Slope subterrane of the Arctic Alaska-Chukotka microplate, which is separated from the northwestern margin of Laurentia (Yukon block) by the Porcupine Shear Zone of Alaska and Yukon. Here, we present new field observations, geological mapping, detrital zircon U-Pb geochronology, and sedimentary/igneous geochemistry to elucidate the stratigraphic architecture of deformed pre-Mississippian rocks exposed within the Porcupine Shear Zone, which we distinguish herein as the newly defined Ch’oodeenjìk succession. The oldest rocks in the Ch’oodeenjìk succession consist of siliciclastic strata of the Lahchah and Sunaghun formations (new names), which yield detrital zircon U-Pb age populations of ca. 1050-1250, 1350-1450, 1600-1650, and 2500-2800 Ma (n =800). This succession is overlain by chert-bearing dolostone and limestone of the Caribou Bar formation (new name) that contains vase-shaped microfossils and yields carbonate carbon (δ13Ccarb) and strontium (87Sr/86Sr) isotopic data that range from ca. -3‰ to +3‰ and 0.70636 to 0.70714, respectively. These data suggest that Lahchah, Sunaghun, and Caribou Bar formations are late Tonian in age. These Neoproterozoic rocks are intruded by Late Devonian (Frasnian-Famennian) felsic plutons and mafic dikes, one of which yielded a sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG) U-Pb age of 380 ± 4 Ma. Neoproterozoic strata of the Ch’oodeenjìk succession are also unconformably overlain by Upper Devonian-Carboniferous (?) siliciclastic rocks of the Darcy Creek formation (new name), which yields detrital zircon populations of ca. 365–385, 420-470 and 625-835 Ma, in addition to Proterozoic age populations similar to the underlying Tonian strata. Together, these new stratigraphic, geochronological, geochemical, and micropaleontological data indicate that pre-Mississippian rocks exposed within the Porcupine Shear Zone most likely represent a peri-Laurentian crustal fragment that differs from the adjacent Yukon block and North Slope subterrane; thus, the Porcupine Shear Zone represents a fundamental tectonic boundary separating autochthonous Laurentia from various accreted peri-Laurentian crustal fragments.

    more » « less
  4. Abstract

    Quartz‐in‐garnet inclusion barometry integrated with trace element thermometry and calculated phase relations is applied to mylonitized schists of the Pinkie unit cropping out on the island of Prins Karls Forland, western part of the Svalbard Archipelago. This approach combines conventional and novel techniques and allows deciphering of the pressure–temperature (P–T) evolution of mylonitic rocks, for which theP–Tconditions could not have been easily deciphered using traditional methods. The results obtained suggest that rocks of the Pinkie unit were metamorphosed under amphibolite facies conditions at 8–10 kbar and 560–630°C and mylonitized at ~500 to 550°C and 9–11 kbar. TheP–Tresults are coupled with in‐situ Th–U‐total Pb monazite dating, which records amphibolite facies metamorphism atc.359–355 Ma. This is the very first evidence of late Devonian–early Carboniferous metamorphism in Svalbard and it implies that the Ellesmerian Orogeny on Svalbard was associated with metamorphism up to amphibolite facies conditions. Thus, it can be concluded that the Ellesmerian collision between the Franklinian margin of Laurentia and Pearya and Svalbard caused not only commonly accepted brittle deformation and weak greenschist facies metamorphism, but also a burial and deformation of rock complexes at much greater depths at elevated temperatures.

    more » « less