skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Falk, Nicholas M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study evaluates a popular density current propagation speed equation using a large, novel set of radiosonde and dropsonde observations. Data from pairs of sondes launched inside and outside of cold pools along with the theoretical density current propagation speed equation are used to calculate sonde-based propagation speeds. Radar-/satellite-based propagation speeds, assumed to be the truth, are calculated by manually tracking the propagation of cold pools and correcting for advection due to the background wind. Several results arise from the comparisons of the theoretical sonde-based speeds with the radar-/satellite-based speeds. First, sonde-based and radar-based propagation speeds are strongly correlated for U.S. High Plains cold pools, suggesting the density current propagation speed equation is appropriate for use in midlatitude continental environments. Second, cold pool Froude numbers found in this study are in agreement with previous studies. Third, sonde-based propagation speeds are insensitive to how cold pool depth is defined since the preponderance of negative buoyancy is near the surface in cold pools. Fourth, assuming an infinite channel depth and assuming an incompressible atmosphere when deriving the density current propagation speed equation can increase sonde-based propagation speeds by up to 20% and 11%, respectively. Finally, sonde-based propagation speeds can vary by ∼300% based on where and when the sondes were launched, suggesting submesoscale variability could be a major influence on cold pool propagation. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract Cold pools can initiate new convection by increasing vertical velocity (mechanical forcing) and locally enhancing moisture content (thermodynamic forcing). This study investigates the impact of the environment on mechanical and thermodynamic forcing from cold pool collisions. An ensemble of high-resolution numerical simulations was conducted that tested the sensitivity of cold pool collisions to three parameters: 1) the initial temperature deficit of cold pools, 2) the initial distance between cold pools, and 3) the static stability and moisture content of the environment. These parameters are tested in the absence of condensation, surface fluxes, radiation, and wind shear. Colder initial cold pools increase mechanical and thermodynamic forcing owing to greater horizontal winds during collisions. For all environments tested, mechanical forcing peaked robustly at an optimal initial distance between the cold pools due to a balance between the creation and dissipation of kinetic energy, and the different phases of density current evolution. Thermodynamic forcing peaked for greater initial cold pool distances than those associated with mechanical forcing. Decreased low-level static stability and an increased vertical gradient in low-level moisture enhanced mechanical and thermodynamic forcing, respectively. It is also shown that the initial temperature deficit had the greatest impact on mechanical and thermodynamic forcing, followed by the environment, and finally the initial separation distance. Finally, cold pool collisions are classified as “mechanically strong” or “mechanically weak,” where mechanically strong collisions increased mechanical forcing beyond that driven by the initial outward spreading of the cold pools. An analogous classification of “thermodynamically strong/weak” is also presented. 
    more » « less