skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fan, Qingsong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rising atmospheric CO2concentration is one of the biggest challenges human civilization faces. Direct air capture (DAC) that removes CO2from the atmosphere provides great potential in carbon neutralization. However, the massive land use and capital investment of centralized DAC plants and the energy-intensive process of adsorbent regeneration limit its wide employment. We develop a distributed carbon nanofiber (CNF)–based DAC air filter capable of adsorbing CO2downstream in ventilation systems. The DAC air filter not only has the potential to remove 596 MtCO2year−1globally but can also decrease energy consumption in existing building systems. The CNF-based adsorbent has a capacity of 4 mmol/g and can be regenerated via solar thermal or electrothermal methods with low carbon footprints. Through life cycle assessment, the CNF air filter shows a carbon removal efficiency of 92.1% from cradle to grave. Additionally, techno-economic analysis estimates a cost of $209 to 668 in capturing and storing 1 tonne of CO2from direct air. 
    more » « less
    Free, publicly-accessible full text available October 17, 2026
  2. A chiral magnetic field brings magnetoplasmonic nanoparticles into close proximity, enabling plasmonic coupling and imparting chirality to resulting superstructures, and consequently, dynamic tunability of plasmonic chiroptical properties. 
    more » « less
  3. Abstract Magnetic fields are uniquely valuable for creating colloidal nanostructured materials, not only providing a means for controlled synthesis but also guiding their self‐assembly into distinct superstructures. In this study, a magnetothermal process for synthesizing hybrid nanostructures comprising ferrimagnetic magnetite nanorods coated with fluorescent perovskite nanocrystals is reported and their magnetic assembly into superstructures capable of emitting linear and circularly polarized light are demonstrated. Under UV excitation, the superstructures assembled in a liner magnetic field produce linear polarized luminescence, and those assembled in a chiral magnetic field exhibit strong circularly polarized luminescence (CPL) with aglumvalue up to 0.44 (±0.004). The CPL is believed to originate from the dipolar interaction between neighboring perovskite nanocrystals attached to the chiral assemblies and the chiral‐selective absorption of the perovskite emission by the magnetite phase. The magnetic synthesis and assembly approaches and the resulting distinctive chiral superstructures are anticipated to open up new avenues for designing diverse functional chiroptical devices. 
    more » « less
  4. The quadrupolar field created by opposing magnets was used to assemble particles into chiral superstructures. 
    more » « less
  5. Organizing the colloidal particles into 3D superstructures is a promising strategy for fabricating functional metamaterials with novel optical, electric, and catalytic properties. The rich surface properties of the colloidal particles provide many ways to manipulate their assembly behavior. Emulsion droplets are ideal microspaces for confining colloidal self-assembly, offering many advantages such as versatility, scalability, and controllability over size, shape, and composition. In this review, we first introduce recently developed strategies for the emulsion-confined assembly of colloidal particles into 3D superstructures by manipulating the interfacial properties of the emulsion droplets and colloidal particles, then demonstrate the novel collective properties of the assembled superstructures and highlight some of their unique optical and catalytic properties and applications in bioimaging, diagnosis, drug delivery, and therapy. 
    more » « less