Abstract The fast and reversible switching of plasmonic color holds great promise for many applications, while its realization has been mainly limited to solution phases, achieving solid‐state plasmonic color‐switching has remained a significant challenge owing to the lack of strategies in dynamically controlling the nanoparticle separation and their plasmonic coupling. Herein, we report a novel strategy to fabricate plasmonic color‐switchable silver nanoparticle (AgNP) films. Using poly(acrylic acid) (PAA) as the capping ligand and sodium borate as the salt, the borate hydrolyzes rapidly in response to moisture and produces OH−ions, which subsequently deprotonate the PAA on AgNPs, change the surface charge, and enable reversible tuning of the plasmonic coupling among adjacent AgNPs to exhibit plasmonic color‐switching. Such plasmonic films can be printed as high‐resolution invisible patterns, which can be readily revealed with high contrast by exposure to trace amounts of water vapor.
more »
« less
Magnetic assembly of plasmonic chiral superstructures with dynamic chiroptical responses
A chiral magnetic field brings magnetoplasmonic nanoparticles into close proximity, enabling plasmonic coupling and imparting chirality to resulting superstructures, and consequently, dynamic tunability of plasmonic chiroptical properties.
more »
« less
- Award ID(s):
- 2203972
- PAR ID:
- 10523303
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Materials Horizons
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2051-6347
- Page Range / eLocation ID:
- 680 to 687
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Remarkable systems have been reported recently using the polylithic integration of semiconductor optoelectronic devices and plasmonic materials exhibiting epsilon-near-zero (ENZ) and negative permittivity. In traditional noble metals, the ENZ and plasmonic response is achieved near the metal plasma frequency, limiting plasmonic optoelectronic device design flexibility. Here, we leverage an all-epitaxial approach to monolithically and seamlessly integrate designer plasmonic materials into a quantum dot light emitting diode, leading to a enhancement over an otherwise identical non-plasmonic control sample. The device presented exhibits optical powers comparable, and temperature performance far superior, to commercially available devices.more » « less
-
Abstract Over the past decade, orbital angular momentum has garnered considerable interest in the field of plasmonics owing to the emergence of surface-confined vortices, known as plasmonic vortices. Significant progress has been made in the generation and manipulation of plasmonic vortices, which broadly unveil the natures of plasmonic spin–orbit coupling and provide accessible means for light–matter interactions. However, traditional characterizations in the frequency domain miss some detailed information on the plasmonic vortex evolution process. Herein, an exotic spin–orbit coupling phenomenon is demonstrated. More specifically, we theoretically investigated and experimentally verified a temporally deuterogenic vortex mode, which can be observed only in the time domain and interferes destructively in the intensity field. The spatiotemporal evolution of this concomitant vortex can be tailored with different designs and incident beams. This work extends the fundamental understanding of plasmonic spin–orbit coupling and provides a unique optical force manipulation strategy, which may fuel plasmonic research and applications in the near future.more » « less
-
Abstract Organic compounds containing luminous rare-earth ions are of interest for numerous nanophotonic and plasmonic applications, including nanoscale lasers, biosensors, and optical magnetism studies. Optical studies of Eu3+complexes revealed that ultra-thin LB monolayers are highly luminescent even when deposited directly on plasmonic metal, which makes these materials very promising for plasmonic applications and studies, including control and enhancement of magnetic dipole emission with a plasmonic environment. In this work, we synthesize amphiphilic complexes with various rare-earth ions Nd3+, Yb3+, and DPT ligands and show that they all are suitable for monolayer or multilayer deposition with the Langmuir–Blodgett (LB) technique. Graphical abstractmore » « less
-
Abstract The generation of significant photocurrents observed in plasmonic metasurfaces is interesting from a fundamental point of view and promising for applications in plasmon-based electronics and plasmonic sensors with compact electrical detection. We show that photoinduced voltages in strongly modulated plasmonic surfaces demonstrate a highly asymmetric angular dependence with polarity switching around the plasmon resonance conditions. The effects are tentatively attributed to coupling between localized and propagating plasmons.more » « less