skip to main content


Search for: All records

Creators/Authors contains: "Fan, Ruchao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Non-autoregressive automatic speech recognition (NASR) models have gained attention due to their parallelism and fast inference. The encoder-based NASR, e.g. connectionist temporal classification (CTC), can be initialized from the speech foundation models (SFM) but does not account for any dependencies among intermediate tokens. The encoder-decoder-based NASR, like CTC alignment-based single-step non-autoregressive transformer (CASS-NAT), can mitigate the dependency problem but is not able to efficiently integrate SFM. Inspired by the success of recent work of speech-text joint pre-training with a shared transformer encoder, we propose a new encoder-based NASR, UniEnc-CASSNAT, to combine the advantages of CTC and CASS-NAT. UniEnc-CASSNAT consists of only an encoder as the major module, which can be the SFM. The encoder plays the role of both the CASS-NAT encoder and decoder by two forward passes. The first pass of the encoder accepts the speech signal as input, while the concatenation of the speech signal and the token-level acoustic embedding is used as the input for the second pass. Examined on the Librispeech 100 h, MyST, and Aishell1 datasets, the proposed UniEnc-CASSNAT achieves state-of-the-art NASR results and is better or comparable to CASS-NAT with only an encoder and hence, fewer model parameters. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Children’s automatic speech recognition (ASR) is always difficult due to, in part, the data scarcity problem, especially for kindergarten-aged kids. When data are scarce, the model might overfit to the training data, and hence good starting points for training are essential. Recently, meta-learning was proposed to learn model initialization (MI) for ASR tasks of different languages. This method leads to good performance when the model is adapted to an unseen language. How-ever, MI is vulnerable to overfitting on training tasks (learner overfitting). It is also unknown whether MI generalizes to other low-resource tasks. In this paper, we validate the effectiveness of MI in children’s ASR and attempt to alleviate the problem of learner overfitting. To achieve model-agnostic meta-learning (MAML), we regard children’s speech at each age as a different task. In terms of learner overfitting, we propose a task-level augmentation method by simulating new ages using frequency warping techniques. Detailed experiments are conducted to show the impact of task augmentation on each age for kindergarten-aged speech. As a result, our approach achieves a relative word error rate (WER) improvement of 51% over the baseline system with no augmentation or initialization. 
    more » « less
  3. This paper proposes a novel linear prediction coding-based data augmentation method for children’s low and zero resource dialect ASR. The data augmentation procedure consists of perturbing the formant peaks of the LPC spectrum during LPC analysis and reconstruction. The method is evaluated on two novel children’s speech datasets with one containing California English from the Southern California Area and the other containing a mix of Southern American English and African American English from the Atlanta, Georgia area. We test the proposed method in training both an HMM-DNN system and an end-to-end system to show model-robustness and demonstrate that the algorithm improves ASR performance, especially for zero resource dialect children’s task, as compared to common data augmentation methods such as VTLP, Speed Perturbation, and SpecAugment. 
    more » « less
  4. null (Ed.)