Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
A dislocation theory-based model for brittle-to-ductile transition in multi-principal element alloysFree, publicly-accessible full text available September 1, 2025
-
Free, publicly-accessible full text available October 1, 2025
-
Abstract The degree of short-range order (SRO) can influence the physical and mechanical properties of refractory multi-principal element alloys (RMPEAs). Here, the effect of SRO degree on the atomic configuration and properties of the equiatomic TiTaZr RMPEA is investigated using the first-principles calculations. Their key roles on the lattice parameters, binding energy, elastic properties, electronic structure, and stacking fault energy (SFE) are analyzed. The results show the degree of SRO has a significant effect on the physical and mechanical properties of TiTaZr. During the SRO degree increasing in TiTaZr lattice, the low SRO degree exacerbates the lattice distortion and the high SRO degree reduces the lattice distortion. The high degree of SRO improves the binding energy and elastic stiffness of the TiTaZr. By analyzing the change in charge density, this change is caused by the atomic bias generated during the formation of the SRO, which leading to a change in charge-density thereby affecting the metal bond polarity and inter-atomic forces. The high SRO degree also reduces SFE, which means the capability of plastic deformation of the TiTaZr is enhanced.more » « less
-
Multi-principal element alloys (MPEAs) exhibit outstanding strength attributed to the complex dislocation dynamics as compared to conventional alloys. Here, we develop an atomic-lattice-distortion-dependent discrete dislocation dynamics framework consisted of random field theory and phenomenological dislocation model to investigate the fundamental deformation mechanism underlying massive dislocation motions in body-centered cubic MPEA. Amazingly, the turbulence of dislocation speed is identified in light of strong heterogeneous lattice strain field caused by short-range ordering. Importantly, the vortex from dislocation flow turbulence not only acts as an effective source to initiate dislocation multiplication but also induces the strong local pinning trap to block dislocation movement, thus breaking the strength-ductility trade-off.more » « less