skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fang, Tzu-Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A three-dimensional, regional simulation is used to investigate ionospheric plasma density irregularities associated with Equatorial Spread F. This simulation is first driven with background electric fields derived from ISR observations. Next, the simulation is driven with electric fields taken from the WAM-IPE global model. The discrepancies between the two electric fields, particularly in the evening prereversal enhancement, produce disagreeing simulation results. The WAM-IPE electric fields are then studied through a simple sensitivity analysis of a field-line integrated electrodynamics model similar to the one used in WAM-IPE. This analysis suggests there is no simple tuning of ion composition or neutral winds that accurately reproduce ISR-observed electric fields on a day-to-day basis. Additionally, the persistency of the prereversal enhancement structure over time is studied and compared to measurements from the ICON satellite. These results suggest that WAM-IPE electric fields generally have a shorter and more variable correlation time than those measured by ICON. 
    more » « less
    Free, publicly-accessible full text available January 9, 2026
  2. Low Earth orbit (LEO) radio occultation|radio occultations (RO) constellations can provide global electron density profiles (EDPs) to better specify and forecast the ionosphere‐thermosphere (I‐T) system. To inform future RO constellation design, this study uses comprehensive Observing System Simulation Experiments (OSSEs) to assess the ionospheric specification impact of assimilating synthetic EDPs into a coupled I‐T model. These OSSEs use 10 different sets of RO constellation configurations containing 6 or 12 LEO satellites with base orbit parameter combinations of 520 or 800 km altitude, and 24° or 72° inclination. The OSSEs are performed using the Ensemble Adjustment Kalman Filter implemented in the data assimilation (DA) Research Testbed and the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM). A different I‐T model is used for the nature run, the Whole Atmosphere Model‐Ionosphere Plasmasphere Electrodynamics (WAM‐IPE), to simulate the period of interest is the St. Patrick's Day storm on March 13–18, 2015. Errors from models and EDP retrieval are realistically accounted for in this study through distinct I‐T models and by retrieving synthetic EDPs through an extension Abel inversion algorithm. OSSE assessment, using multiple metrics, finds that greater EDP spatial coverage leading to improved specification at altitudes 300 km and above, with the 520 km altitude constellations performing best due to yielding the highest observation counts. A potential performance limit is suggested with two 6‐satellite constellations. Lastly, close examination of Abel inversion error impacts highlights major EDP limitations at altitudes below 200 km and dayside equatorial regions with large horizontal gradients and low electron density magnitudes. 
    more » « less
  3. Key Points Validation of ionospheric total electron content (TEC) by the state‐of‐the‐art ionospheric models hosted by NASA Community Coordinated Modeling Center, National Oceanic and Atmospheric Administration Space Weather Prediction Center, and NASA Jet Propulsion Laboratory (JPL) Multiple metrics and skill scores are used to assess the performance of ionospheric models in capturing storm time TEC anomaly GLObal Total Electron Content and JPL Global Ionospheric Map perform best, and physics‐based models perform better than the empirical model in capturing storm TEC variations 
    more » « less
  4. Abstract This study presents a data‐driven approach to quantify uncertainties in the ionosphere‐thermosphere (IT) system due to varying solar wind parameters (drivers) during quiet conditions (Kp < 4) and fixed solar radiation and lower atmospheric conditions representative of 16 March 2013. Ensemble simulations of the coupled Whole Atmosphere Model with Ionosphere Plasmasphere Electrodynamics (WAM‐IPE) driven by synthetic solar wind drivers generated through a multi‐channel variational autoencoder (MCVAE) model are obtained. Applying the polynomial chaos expansion (PCE) technique, it is possible to estimate the means and variances of the QoIs as well as the sensitivities of the QoIs with regard to the drivers. Our results highlight unique features of the IT system's uncertainty: (a) the uncertainty of the IT system is larger during nighttime; (b) the spatial distributions of the uncertainty for electron density and zonal drift at fixed local times present 4 peaks in the evening sector, which are associated with the low‐density regions of longitude structure of electron density; (c) the uncertainty of the equatorial electron density is highly correlated with the uncertainty of the zonal drift, especially in the evening sector, while it is weakly correlated with the vertical drift. A variance‐based global sensitivity analysis suggests that the IMF Bz plays a dominant role in the uncertainty of electron density. A further discussion shows that the uncertainty of the IT system is determined by the magnitudes and universal time variations of solar wind drivers. Its temporal and spatial distribution can be modulated by the average state of the IT system. 
    more » « less
  5. Abstract Spread‐F (SF) is a feature that can be visually observed on ionograms when the ionosonde signals are significantly impacted by plasma irregularities in the ionosphere. Depending on the scale of the plasma irregularities, radio waves of different frequencies are impacted differently when the signals pass through the ionosphere. An automated method for detecting SF in ionograms is presented in this study. Through detecting the existence of SF in ionograms, we can help identify instances of plasma irregularities that are potentially affecting the high‐frequency radio‐wave systems. The ionogram images from Jicamarca observatory in Peru, during the years 2008–2019, are used in this study. Three machine learning approaches have been carried out: supervised learning using Support Vector Machines, and two neural network‐based learning methods: autoencoder and transfer learning. Of these three methods, the transfer learning approach, which uses convolutional neural network architectures, demonstrates the best performance. The best existing architecture that is suitable for this problem appears to be the ResNet50. With respect to the training epoch number, the ResNet50 showed the greatest change in the metric values for the key metrics that we were tracking. Furthermore, on a test set of 2050 ionograms, the model based on the ResNet50 architecture provides an accuracy of 89%, recall of 87%, precision of 95%, as well as Area Under the Curve of 96%. The work also provides a labeled data set of around 28,000 ionograms, which is extremely useful for the community for future machine learning studies. 
    more » « less