skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 9, 2026

Title: Regional simulations of equatorial spread F driven with, and an analysis of, WAM-IPE electric fields
A three-dimensional, regional simulation is used to investigate ionospheric plasma density irregularities associated with Equatorial Spread F. This simulation is first driven with background electric fields derived from ISR observations. Next, the simulation is driven with electric fields taken from the WAM-IPE global model. The discrepancies between the two electric fields, particularly in the evening prereversal enhancement, produce disagreeing simulation results. The WAM-IPE electric fields are then studied through a simple sensitivity analysis of a field-line integrated electrodynamics model similar to the one used in WAM-IPE. This analysis suggests there is no simple tuning of ion composition or neutral winds that accurately reproduce ISR-observed electric fields on a day-to-day basis. Additionally, the persistency of the prereversal enhancement structure over time is studied and compared to measurements from the ICON satellite. These results suggest that WAM-IPE electric fields generally have a shorter and more variable correlation time than those measured by ICON.  more » « less
Award ID(s):
2213849
PAR ID:
10588968
Author(s) / Creator(s):
; ;
Publisher / Repository:
frontieran.org
Date Published:
Journal Name:
Frontiers in Physics
Volume:
12
ISSN:
2296-424X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using the latest coupled geospace model Multiscale Atmosphere‐Geospace Environment (MAGE) and observations from Jicamarca Incoherent scatter radar (ISR) and ICON ion velocity meter (IVM) instrument, we examine the pre‐reversal enhancement (PRE) during geomagnetic quiet time period. The MAGE shows comparable PRE to both the Jicamarca ISR and ICON observations. There appears to be a discrepancy between the Jicamarca ISR and ICON IVM with the later showed PRE about two times larger (∼40 m/s). This is the first time that MAGE is used to simulate the PRE. The results show that the MAGE can simulate the PRE well and are mostly consistent with observations. 
    more » « less
  2. Abstract This paper uses a regional simulation of plasma convective instability in the postsunset equatorial ionosphere together with a global atmosphere/ionosphere/plasmasphere GCM (WAM‐IPE) to forecast irregularities associated with equatorial spreadF(ESF) for 1–2 hr after sunset. First, the regional simulation is initialized and forced using ionosphere state parameters derived from campaign data from the Jicamarca Radio Observatory and from empirical models. The irregularities produced by these simulations are found to be quantitatively similar to those observed. Next, the aforementioned state parameters are replaced with parameters from WAM‐IPE, and the resulting departures between the simulated and observed irregularities are noted. In one of five cases, the forecast failed to accurately predict ESF irregularities due to the late reversal of the zonal thermospheric winds. In four of five cases, significant differences between the observed and predicted prereversal enhancement (PRE) of the background vertical drifts resulted in degraded forecast accuracy. This highlights the need for improved PRE forecasting in the global‐scale model. 
    more » « less
  3. We simulated the Nov 3-4, 2021 geomagnetic storm event penetrating electric field using the Multiscale Atmosphere-Geospace Environment (MAGE) model and compared with the NASA ICON observation. The ICON observation showed sudden enhancement of the vertical ion drift when the penetrating electric field arrived at the equatorial region. The MAGE model simulated vertical ion drifts have the similarly fast enhancement that shown in the ICON data at the same UT time and satellite location. Hence, ICON ion drift data was able to verify MAGE simulation, which couples the magnetospheric model was able to simulate the penetrating electric field very well. 
    more » « less
  4. Abstract Mesoscale high‐latitude electric fields are known to deposit energy into the ionospheric and thermospheric system, yet the energy deposition process is not fully understood. We conduct a case study to quantify the energy deposition from mesoscale high‐latitude electric fields to the thermosphere. For the investigation, we obtain the high‐latitude electric field with mesoscale variabilities from Poker Flat Incoherent Scatter Radar measurements during a moderate geomagnetic storm, providing the driver for the Global Ionosphere and Thermosphere Model (GITM) via the High‐latitude Input for Mesoscale Electrodynamics framework. The HIME‐GITM simulation is compared with GITM simulations driven by the large‐scale electric field from the Weimer model. Our modeling results indicate that the mesoscale electric field modifies the thermospheric energy budget primarily through enhancing the Joule heating. Specifically, in the local high‐latitude region of interest, the mesoscale electric field enhances the Joule heating by up to five times. The resulting neutral temperature enhancement can reach up to 50 K above 200 km altitude. Significant increase in the neutral density above 250 km altitude and in the neutral wind speed are found in the local region as well, lagging a few minutes after the Joule heating enhancement. We demonstrate that the energy deposited by the mesoscale electric field transfers primarily to the gravitational potential energy in the thermosphere. 
    more » « less
  5. Abstract The statistics of day‐to‐day tidal variability within 35‐day running mean windows is obtained from Michelson Interferometer for Global High‐Resolution Thermospheric Imaging (MIGHTI)/Ionospheric Connection Explorer (ICON) observations in the 90–107 km height region for the year 2020. Temperature standard deviations for 18 diurnal and semidiurnal tidal components, and for four quasi‐stationary planetary waves are presented, as function of latitude, altitude, and day‐of‐year. Our results show that the day‐to‐day variability (DTDV) can be as large as 70% of the monthly mean amplitudes, thus providing a significant source of variability for the ionospheric E‐region dynamo and hence for the F‐region plasma. We further validate our results with COSMIC‐2 ionospheric observations and present an approach to extend the MIGHTI/ICON results to all latitudes using Hough Mode Extension fitting, to produce global tidal fields and their statistical DTDV that are suitable as lower boundary conditions for nudging and ensemble modeling of TIE‐GCM. In the future, this will likely help to establish a data‐driven perspective of space weather variability caused by the tidal weather of the lower atmosphere. 
    more » « less