Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial–temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents’ flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents’ activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood.more » « less
-
This study uses mobility data in the context of 2017 Hurricane Harvey in Harris County to examine the impact of flooding on access to dialysis centers. We examined access dimensions using static and dynamic metrics. The static metric is the shortest distance from census block groups to the closest centers. Dynamic metrics are: 1) redundancy (daily unique number of centers visited), 2) frequency (daily number of visits to dialysis centers), and 3) proximity (visits weighted by distance to dialysis centers). The results show that: the extent of dependence of regions on dialysis centers varies; flooding significantly reduces access redundancy and frequency of dialysis centers; regions with a greater minority percentage and lower household income were likely to experience extensive disruptions; high-income regions more quickly revert to pre-disaster levels; larger centers located in non-flooded areas are critical to absorbing the unmet demand from disrupted facilities.more » « less
-
The use of crowdsourced data has been finding practical use for enhancing situational awareness during disasters. While recent studies have shown promising results regarding the potential of crowdsourced data (such as user-generated flood reports) for flash flood mapping and situational awareness, little attention has been paid to data imbalance issues that could introduce biases in data and assessment. To address this gap, in this study, we examine biases present in crowdsourced reports to identify data imbalance with a goal of improving disaster situational awareness. Three biases are examined: sample bias, spatial bias, and demographic bias. To examine these biases, we analyzed reported flooding from 3-1-1 reports (which is a citizen hotline allowing the community to report problems such as flooding) and Waze reports (which is a GPS navigation app that allows drivers to report flooded roads) with respect to FEMA damage data collected in the aftermaths of Tropical Storm Imelda in Harris County, Texas, in 2019 and Hurricane Ida in New York City in 2021. First, sample bias is assessed by expanding the flood-related categories in 3-1-1 reports. Integrating other flooding related topics into the Global Moran's I and Local Indicator of Spatial Association (LISA) revealed more communities that were impacted by floods. To examine spatial bias, we perform the LISA and BI-LISA tests on the data sets—FEMA damage, 3-1-1 reports, and Waze reports—at the census tract level and census block group level. By looking at two geographical aggregations, we found that the larger spatial aggregations, census tracts, show less data imbalance in the results. Through a regression analysis, we found that 3-1-1 reports and Waze reports have data imbalance limitations in areas where minority populations and single parent households reside. The findings of this study advance understanding of data imbalance and biases in crowdsourced datasets that are growingly used for disaster situational awareness. Through addressing data imbalance issues, researchers and practitioners can proactively mitigate biases in crowdsourced data and prevent biased and inequitable decisions and actions.more » « less
-
The objective of this study is to predict road flooding risks based on topographic, hydrologic, and temporal precipitation features using machine learning models. Existing road inundation studies either lack empirical data for model validations or focus mainly on road inundation exposure assessment based on flood maps. This study addresses this limitation by using crowdsourced and fine-grained traffic data as an indicator of road inundation, and topographic, hydrologic, and temporal precipitation features as predictor variables. Two tree-based machine learning models (random forest and AdaBoost) were then tested and trained for predicting road inundations in the contexts of 2017 Hurricane Harvey and 2019 Tropical Storm Imelda in Harris County, Texas. The findings from Hurricane Harvey indicate that precipitation is the most important feature for predicting road inundation susceptibility, and that topographic features are more critical than hydrologic features for predicting road inundations in both storm cases. The random forest and AdaBoost models had relatively high AUC scores (0.860 and 0.810 for Harvey respectively and 0.790 and 0.720 for Imelda respectively) with the random forest model performing better in both cases. The random forest model showed stable performance for Harvey, while varying significantly for Imelda. This study advances the emerging field of smart flood resilience in terms of predictive flood risk mapping at the road level. In particular, such models could help impacted communities and emergency management agencies develop better preparedness and response strategies with improved situational awareness of road inundation likelihood as an extreme weather event unfolds.more » « less
-
The emergence of mobile platforms equipped with Global Positioning System technology enables real-time data collection affording opportunities for mining data applicable to rapid flood inundation assessment. The collected data can be employed to complement existing methods for rapid flood inundation assessment, such as remote sensing, to enhance situational awareness. In particular, telemetry-based digital trace data related to human activity have intrinsic advantages to be used for inundation assessment. In this study, we investigate the use of Mapbox telemetry data, which provides human activity indices with high spatial and temporal resolutions, for application in rapid flood inundation assessment. Using data from Hurricane Harvey in 2017 in Harris County, Texas, we (1) study anomalous fluctuations in human activities and analyze the differences in activity level between inundated and non-inundated areas and (2) investigate changes in the concentration of human activity, to explore the disruption of human activity as an indicator of flood inundation. Results show that both analyses can provide valuable rapid insights regarding flood inundation status. Anomalous activities can be significantly higher/lower in flooded areas compared with non-flooded areas. Also, the concentration of human activity during the flood propagation period across affected watersheds can be observed. This study contributes to the state of knowledge in smart flood resilience by investigating the application of ubiquitous telemetry-based digital trace data to enhance rapid flood inundation assessment. Accordingly, the use of such digital trace data could provide emergency managers and public officials with valuable insights to inform impact evaluation and response actions.more » « less